To address phenomena in physics, mathematicians often construct differential equations subjected to certain boundary conditions. For instance, in the study of waves, we arrive at the following problem after the separation of variables:

{(xx2λ)u=0 in (0,),u(0)=u()=0.(1)\begin{cases} (-\partial^2_{xx}-\lambda)u=0\text{ in }(0,\ell), \\ u(0)=u(\ell)=0. \end{cases}\tag1

Notice that the general solution is given by u=Asin(λ1/2x+φ)u=A\sin(\lambda^{1/2}x+\varphi). Plugging in the boundary conditions, we conclude that the solutions of (1) are given by

u=Asin(nπx),λ=n2π22,nZ.(2)u=A\sin\left(n\pi x\over\ell\right),\quad \lambda={n^2\pi^2\over\ell^2},\quad n\in\mathbb Z.\tag2

Observe that xx2-\partial^2 _ {xx} is a linear operator, so we can regard (1) as an eigenvalue problem for xx2-\partial^2 _ {xx} in the following vector space

U1={uC([0,]):u(0)=u()=0}.U_1=\lbrace u\in C^\infty([0,\ell]):u(0)=u(\ell)=0\rbrace.

Consequently, (2) indicates that the spectrum (i.e. eigenvalues) of xx2-\partial^2 _ {xx} in U1U _ 1 is countably infinite and discrete. However, if we look at the eigenvalue problem of xx2-\partial^2_{xx} in the space

U2={uC([0,+))):u(0)=0u uniformly bounded}U_2=\lbrace u\in C^\infty([0,+\infty))):u(0)=0\wedge u\text{ uniformly bounded}\rbrace

then we arrive at the following solutions:

u=Asin(αx),λ=α2,αR.(3)u=A\sin(\alpha x), \quad \lambda=\alpha^2, \quad \alpha\in\mathbb R.\tag3

This indicates that the spectrum of xx-\partial_{xx} in U2U_2 is exactly (0,+)(0,+\infty).

Contrasting (2) and (3), we see that in infinite-dimensional vector spaces, the spectrum of linear operators can possess contrasting topological properties.

Ordinary differential equations (with boundary conditions) arising from physics can often be converted to integral equations via the means of Green's function. Let LL be some linear differential operator and GG be its Green's function. Then the eigenvalue problem Lu=λuLu=\lambda u on some interval [a,b][a,b] becomes an integral equation:

Lu=λu    u(x)=λabG(x,t)u(t)ds.(4)Lu=\lambda u\iff u(x)=\lambda\int_a^bG(x,t)u(t)\mathrm ds.\tag4

This is known as Fredholm's integral equation. For convenience of investigation, we define the operator

(Gu)(x)=abG(x,t)u(t)dt(5)(Gu)(x)=\int_a^b G(x,t)u(t)\mathrm dt\tag5

and assume G(x,y)G(x,y) is bounded.

Transformation to a discrete problem

Let a=x0<x1<x2<<xn=ba=x_0<x_1<x_2<\dots<x_n=b be a partition of [a,b][a,b] satisfying xqxq1=(ba)/n:=δx_q-x_{q-1}=(b-a)/n:=\delta. Then GuGu should be well approximated by

(Gnu)(x)=q=1nG(x,xq)u(xq)δ(G_nu)(x)=\sum_{q=1}^nG(x,x_q)u(x_q)\delta

when n+n\to+\infty. Consequently, we can attack the eigenvalue problem (4) by considering the equation

[(IλGn)u](x)=0(6)[(I-\lambda G_n)u](x)=0\tag6

and make n+n\to+\infty. Because (6) needs to be valid for all x[a,b]x\in[a,b], it must also be true when x=xpx=x_p. Consequently, we transform the eigenvalue problem (6) into a system of linear equations:

u(xp)λδq=1nG(xp,xq)u(xq)=0u(x_p)-\lambda\delta\sum_{q=1}^nG(x_p,x_q)u(x_q)=0

for p=1,2,,np=1,2,\dots,n. This equation has a unique solution if and only if the determinant (Gp,q=G(xp,xq)G_{p,q}=G(x_p,x_q))

Dn(λ)=1λδG1,1λδG1,2λδG1,3λδG1,nλδG2,11λδG2,2λδG2,3λδG2,nλδG3,1λδG3,21λδG3,3λδG3,nλδGn,1λδGn,2λδGn,31λδGn,nD_n(\lambda)= \begin{vmatrix} 1-\lambda\delta G_{1,1} & -\lambda\delta G_{1,2} & -\lambda\delta G_{1,3} & \dots & -\lambda\delta G_{1,n} \\ -\lambda\delta G_{2,1} & 1-\lambda\delta G_{2,2} & -\lambda\delta G_{2,3} & \dots & -\lambda\delta G_{2,n} \\ -\lambda\delta G_{3,1} & -\lambda\delta G_{3,2} & 1-\lambda\delta G_{3,3} & \dots & -\lambda\delta G_{3,n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ -\lambda\delta G_{n,1} & -\lambda\delta G_{n,2} & -\lambda\delta G_{n,3} & \dots & 1-\lambda\delta G_{n,n} \end{vmatrix}

vanishes at λ\lambda. To study how this determinant behaves has n+n\to+\infty, we need to expand it first into a polynomial of λ\lambda:

Expansion of Dn(λ)D_n(\lambda)

If ep,qe_{p,q} represents the p,qp,q'th entry of the identity matrix, then the Leibniz expansion gives

Dn(λ)=σSnsgn(σ)p=1n(ep,σ(p)λδGp,σ(p)).(7)D_n(\lambda)=\sum_{\sigma\in S_n}\operatorname{sgn}(\sigma)\prod_{p=1}^n(e_{p,\sigma(p)}-\lambda\delta G_{p,\sigma(p)}).\tag7

Observe that

p=1n(αp+βp)=A{1,2,,n}pAαpqAcβq,\prod_{p=1}^n(\alpha_p+\beta_p)=\sum_{A\subset\lbrace 1,2,\dots,n\rbrace}\prod_{p\in A}\alpha_p\prod_{q\in A^c}\beta_q,

so (7) becomes

Dn(λ)=σSnsgn(σ)A(λδ)ApAGp,σ(p)qAceq,σ(q).D_n(\lambda)=\sum_{\sigma\in S_n}\operatorname{sgn}(\sigma)\sum_A(-\lambda\delta)^{\vert A\vert}\prod_{p\in A}G_{p,\sigma(p)}{\color{blue}\prod_{q\in A^c}e_{q,\sigma(q)}}.

Because the blue term is zero when σ\sigma does not fix elements of Ac={1,2,,n}AA^c=\lbrace1,2,\dots,n\rbrace\setminus A, we only need to restrict the domain of σ\sigma to the permutations SAS_A of set AA:

Dn(λ)=A(λδ)AσSAsgn(σ)pAGp,σ(p)=m=0nam,nλm,D_n(\lambda)=\sum_A(-\lambda\delta)^{\vert A\vert}\sum_{\sigma\in S_A}\operatorname{sgn}(\sigma)\prod_{p\in A}G_{p,\sigma(p)}=\sum_{m=0}^na_{m,n}\lambda^m,

where

am,n=(δ)mA=mσSAsgn(σ)pAGp,σ(p)=(δ)m1p1<p2<<pmntSmsgn(t)k=1mGpk,σ(pk)=(δ)m1p1<p2<<pmndet(Gpr,ps)1r,sm=(δ)mm!1p1,p2,,pmnp1,p2,,pm distinctdet(Gpr,ps)1r,sm\begin{aligned} a_{m,n} &=(-\delta)^m\sum_{\vert A\vert=m}\sum_{\sigma\in S_A}\operatorname{sgn}(\sigma)\prod_{p\in A}G_{p,\sigma(p)} \\ &=(-\delta)^m\sum_{1\le p_1<p_2<\dots<p_m\le n}\sum_{t\in S_m}\operatorname{sgn}(t)\prod_{k=1}^m G_{p_k,\sigma(p_k)} \\ &=(-\delta)^m\sum_{1\le p_1<p_2<\dots<p_m\le n}\det(G_{p_r,p_s})_{1\le r,s\le m} \\ &={(-\delta)^m\over m!}\sum_{\substack{1\le p_1,p_2,\dots,p_m\le n\\p_1,p_2,\dots,p_m\text{ distinct}}}\det(G_{p_r,p_s})_{1\le r,s\le m} \end{aligned}

Because the determinant is zero when its matrix has identical rows or columns, we can drop the requirement that p1,p2,,pmp_1,p_2,\dots,p_m are distinct, so we have

am,n=(1)mm!1p1,p2,,pmnδmdet(Gpr,ps)1r,sm=(1)mm!1p1,p2,,pmnδmG(xp1,xp1)G(xp1,xp2)G(xp1,xpm)G(xp2,xp1)G(xp2,xp2)G(xp2,xpm)G(xpm,xp1)G(xpm,xp2)G(xpm,xpm).\begin{aligned} a_{m,n} &={(-1)^m\over m!}\sum_{\substack{1\le p_1,p_2,\dots,p_m\le n}}\delta^m\det(G_{p_r,p_s})_{1\le r,s\le m} \\ &={(-1)^m\over m!}\sum_{\substack{1\le p_1,p_2,\dots,p_m\le n}}\delta^m \begin{vmatrix} G(x_{p_1},x_{p_1}) & G(x_{p_1},x_{p_2}) & \dots & G(x_{p_1},x_{p_m}) \\ G(x_{p_2},x_{p_1}) & G(x_{p_2},x_{p_2}) & \dots & G(x_{p_2},x_{p_m}) \\ \vdots & \vdots & \ddots & \vdots \\ G(x_{p_m},x_{p_1}) & G(x_{p_m},x_{p_2}) & \dots & G(x_{p_m},x_{p_m}) \end{vmatrix}. \end{aligned}

Limit of Dn(λ)D_n(\lambda) as n+n\to+\infty

When n+n\to+\infty, am,na_{m,n} converges pointwise to

am=(1)mm! ⁣at1,t2,,tmbG(t1,t1)G(t1,t2)G(t1,tn)G(t2,t1)G(t2,t2)G(t2,tn)G(tn,t1)G(tn,t2)G(tn,tn)dt1dt2dtn.a_m={(-1)^m\over m!}\mathop{\int\dots\int}\limits_{a\le t_1,t_2,\dots,t_m\le b} \begin{vmatrix} G(t_1,t_1) & G(t_1,t_2) & \dots & G(t_1,t_n) \\ G(t_2,t_1) & G(t_2,t_2) & \dots & G(t_2,t_n) \\ \vdots & \vdots & \ddots & \vdots \\ G(t_n,t_1) & G(t_n,t_2) & \dots & G(t_n,t_n) \end{vmatrix} \mathrm dt_1\mathrm dt_2\cdots\mathrm dt_n.

By our assumption, G(x,y)A\vert G(x,y)\vert\le A for some fixed A>0A>0 throughout (x,y)[a,b]2(x,y)\in [a,b]^2, so Hadamard's inequality gives

m!am,nδm1p1,p2,,pmnr=1m(s=1mG(xps,xpr)2)1/2δmnmr=1m(m1/2A)=mm/2[(ba)A]m\begin{aligned} \vert m!a_{m,n}\vert &\le\delta^m\sum_{1\le p_1,p_2,\dots,p_m\le n}\prod_{r=1}^m\left(\sum_{s=1}^m\vert G(x_{p_s},x_{p_r})\vert^2\right)^{1/2} \\ &\le\delta^mn^m\prod_{r=1}^m(m^{1/2}A)=m^{m/2}[(b-a)A]^m \end{aligned}

From Stirling's approximation m!2πmm+12emm!\sim\sqrt{2\pi} m^{m+\frac12}e^{-m}, we see that

am,nCmm/2[(ba)eA]m,\vert a_{m,n}\vert\le Cm^{-m/2}[(b-a)eA]^m,

for some fixed C>0C>0 and all m,nm,n so by the dominated convergence theorem, we conclude that

Dn(λ)D(λ)=m0amλmD_n(\lambda)\to D(\lambda)=\sum_{m\ge0}a_m\lambda^m

uniformly for all λ\lambda in any compact subset of C\mathbb C, so D(λ)D(\lambda) is an entire function.

The spectrum of LL

By the nature of determinants, we conclude that λ\lambda is a solution to the eigenvalue problem (4) if and only if D(λ)=0D(\lambda)=0. Because a nonconstant analytic function can only have isolated zeros, we see that the set of eigenvalues SS of LL can only belong in one of the following types:

  1. SS is empty or finite.
  2. SS is countably infinite and discrete.
  3. S=CS=\mathbb C.

Conclusively, the fundamental reason for certain differential operators to possess a discrete spectrum is that it is characterized by the isolated zeros of some analytic function.