Travor Liu

Department of Mathematics Stanford University

21 July 2025

Introduction

Let $\zeta(s)$ be the Riemann zeta-function and $s = \sigma + it$. We know

- Dirichlet series: $\zeta(s) = \sum_{n>1} n^{-s}$ when $\sigma > 1$,
- Functional equation: $\zeta(s) = \chi(s)\zeta(1-s)$, where

$$\chi(s) = 2(2\pi)^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s).$$

- Trivial zeros: $\forall m \in \mathbb{N}, \zeta(-2m) = 0$.
- The nontrivial zeros $\rho = \beta + i\gamma$ satisfy $0 \le \beta \le 1$. (PNT: $0 < \beta < 1$).
- Riemann hypothesis: If $\rho = \beta + i\gamma$ is a nontrivial zero, then $\beta = \frac{1}{2}$.

• The nontrivial zeros $\rho = \beta + i\gamma$ satisfy $0 \le \beta \le 1$. (PNT: $0 < \beta < 1$).

• Riemann hypothesis: If $\rho = \beta + i\gamma$ is a nontrivial zero, then $\beta = \frac{1}{2}$.

The region $0 \le \sigma \le 1$ is called the **critical strip**, and the line $\sigma = \frac{1}{2}$ is known as the **critical line**. We will discuss

- Counting nontrivial zeros: $N(T) = \#\{\rho : 0 < \gamma \le T\},\$
- 2 Zeros off the critical line: $N(\sigma, T) = \#\{\rho : \beta \ge \sigma, 0 < \gamma \le T\}$,
- **3** Zeros on the critical line: $N_0(T) = \#\{\rho : \beta = \frac{1}{2}, 0 < \gamma \le T\}$.

Highlights

Introduction

0000

We will go over the following classical results:

- von Mangoldt (1905): $N(T) \sim (2\pi)^{-1} T \log T$,
- Bohr-Landau (1914): $N(\sigma,T) \ll_{\sigma} T$ for fixed $\sigma > \frac{1}{2}$.
- Hardy–Littlewood (1921): $N_0(T) \gg T$.
- Selberg (1942): $N_0(T) \gg N(T)$, or a positive proportion of ρ satisfies RH.

Table of Contents

- Counting nontrivial zeros
- 2 Counting zeros off the line
- 3 Counting zeros on the line
- 4 Bibliography

Table of Contents

Introduction

- Counting nontrivial zeros
 - $N(T) \to \infty$
 - Asymptotic formula for N(T)

Define

Introduction

$$\xi(s) = \frac{1}{2}s(s-1)\pi^{-\frac{s}{2}}\Gamma\left(\frac{s}{2}\right)\zeta(s).$$

Then

- $\xi(s)$ is entire.
- $\xi(s) = \xi(1-s)$.
- The zeros of $\xi(s)$ coincide with the nontrivial zeros of $\zeta(s)$.

Introduction 0000 $N(T) \to \infty$

$$N(T) \to \infty$$

Recall complex function theory:

Definition (Entire function of finite order)

An entire function f(z) is of order $0 \le \lambda < \infty$ if

$$|f(z)| \ll_{\varepsilon} e^{|z|^{\lambda+\varepsilon}}, \quad z \to \infty.$$

Theorem (Classification of nonzero entire functions of finite order)

If f(z) is an entire function of order λ without zeros, then $f(z) = e^{p(z)}$, where p(z) is a polynomial of degree $\leq \lambda$.

Proof idea

Theorem

If f(z) is an entire function of order λ without zeros, then $f(z) = e^{p(z)}$, where p(z) is a polynomial of degree $\leq \lambda$.

Corollary

If f(z) is an entire function of order $n \in \mathbb{N}$ with finitely many zeros, then $|f(z)| \ll e^{C|z|^n}$.

By the theorem, $f(z) = e^{p(z)}q(z)$ for polynomial p, q s.t. deg $p \le n$, so

$$|f(z)| \ll (1+|z|)^{\deg q} e^{C_0|z|^{\deg p}} \ll e^{C|z|^n}.$$

We will show that $\xi(s)$ is of order 1 but $\log |\xi(s)|$ is not $\leq C|s|$.

Proof of $N(T) \to \infty$

By very tricky integral transforms, it can be proved that

$$\xi\left(\frac{1}{2}+z\right) = \sum_{n\geq 0} c_n z^{2n}, \quad c_n \geq 0.$$

Thus, we have for $|z| = R \ge 2$ that

$$\left|\xi\left(\frac{1}{2}+z\right)\right| \leq \xi\left(\frac{1}{2}+R\right) \times R^2 \pi^{-\frac{R}{2}} \Gamma\left(\frac{R}{2}-\frac{1}{4}\right) = e^{\frac{1}{2}R\log R + O(R)},$$

so $\xi(s)$ is of order 1.

If $\xi(s)$ only has finitely many zeros, then $\xi\left(\frac{1}{2} + R\right) \le e^{AR}$, which is a contradiction.

Asymptotic formula for N(T)

Theorem (von Mangoldt)

We have for $T \to +\infty$,

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).$$

Riemann (1859) stated it, but the first proof was due to von Mangoldt.

Asymptotic formula for N(T)

Because $\xi(s)$ has no real zeros,

$$2N(T) = \frac{1}{2\pi} \Delta_{\gamma_1 + \gamma_2 + \gamma_3 + \gamma_4} \arg \xi(s).$$

By
$$\xi(s) = \xi(1-s)$$
 and $\xi(\overline{s}) = \overline{\xi(s)}$,

$$\Delta_{\gamma_2} \arg \xi(s) = \Delta_{\gamma_4} \arg \xi(s),$$

$$\Delta_{\gamma_3} \arg \xi(s) = \Delta_{\gamma_1} \arg \xi(s),$$

$$\Delta_{\gamma_4} \arg \xi(s) = \Delta_{\gamma_1} \arg \xi(s).$$

$$\Rightarrow N(T) = \frac{1}{\pi} \Delta_{\gamma_1} \arg \xi(s).$$

Decomposition of $\arg \xi(s)$

$$N(T) = \frac{1}{\pi} \Delta_{\gamma_1} \arg \xi(s) = \frac{1}{\pi} \Delta_{\gamma_1} \arg \left[\frac{1}{2} s(s-1) \pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \right] + \underbrace{\frac{1}{\pi} \Delta_{\gamma_1} \arg \zeta(s)}_{S(T)},$$

where

$$\Delta_{\gamma_1} \arg[s(s-1)] = \arg\left(-\frac{1}{4} - T^2\right) = \pi, \quad \Delta_{\gamma_1} \arg(\pi^{-\frac{s}{2}}) = -\frac{T}{2}\log\pi.$$

By Stirling,

$$\Delta_{\gamma_1} \arg \Gamma\left(\frac{s}{2}\right) = \arg \Gamma\left(\frac{\frac{1}{2} + iT}{2}\right) = \frac{T}{2} \log \frac{T}{2} - \frac{\pi}{8} - \frac{T}{2} + O\left(\frac{1}{T}\right).$$

Introduction

Main term for N(T)

Combining these results, we have

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + \frac{7}{8} + S(T) + O\left(\frac{1}{T}\right),$$

where

$$S(T) = \frac{1}{\pi} \Delta_{\gamma_1} \arg \zeta(s)$$

= $\frac{1}{\pi} \Delta_2^{2+iT} \arg \zeta(s) + \frac{1}{\pi} \Delta_{2+iT}^{\frac{1}{2}+iT} \arg \zeta(s)$.

Introduction

Bounding S(T)

Theorem (von Mangoldt, 1905; Backlund, 1918)

As
$$T \to +\infty$$
, $S(T) = O(\log T)$.

Introduction

Bounding S(T)

Theorem (von Mangoldt, 1905; Backlund, 1918)

As
$$T \to +\infty$$
, $S(T) = O(\log T)$.

When $\sigma = 2$.

$$\Re \zeta(s) = 1 + \sum_{n \ge 2} \frac{\cos(t \log n)}{n^2} \ge 1 - \sum_{n \ge 2} \frac{1}{n^2}$$
$$\ge 1 - \int_2^{+\infty} \frac{\mathrm{d}x}{x^2} = 1 - \frac{1}{2} = \frac{1}{2} > 0,$$

Counting zeros off the line

so $|\arg \zeta(s)| < \frac{\pi}{2}$ on $\sigma = 2$, which means

$$|\Delta_2^{2+iT}\arg\zeta(s)|=|\arg\zeta(2+iT)-0|<\frac{\pi}{2}.$$

Bounding S(T)

For $\Delta_{2+iT}^{\frac{1}{2}+iT}$ arg $\zeta(s)$, if $\alpha < \beta$ are successive real zeros of $\eta(\sigma) = \Re \zeta(\sigma + iT)$ in $(\frac{1}{2}, 2)$, then $\eta(\sigma)$ does not change sign in $[\alpha, \beta]$, so

Counting zeros off the line

$$|\Delta_{\beta+iT}^{\alpha+iT} \arg \zeta(s)| \le \pi.$$

Let q(T) = # of zeros of $\eta(\sigma)$ in $(\frac{1}{2}, 2)$. Then

$$|\Delta_{2+iT}^{\frac{1}{2}+iT}\arg\zeta(s)| \le (q(T)+1)\pi,$$

so one has

$$|S(T)| \le q(T) + \frac{3}{2}.$$

It suffices to prove $q(T) = O(\log T)$.

Introduction

Bounding q(T)

Theorem (Jensen)

Let f be analytic in $|z| \le R$ s.t. $f(0) \ne 0$ and

$$n_f(r) = \# of zeros \ of \ f(z) \ in \ |z| \le r.$$

Then

$$\int_0^R \frac{n_f(r)}{r} dr = \int_0^1 \log|f(Re^{2\pi ix})| dx - \log|f(0)|.$$

Let $f(z) = \zeta(z+2+iT) + \zeta(z+2-iT)$, so it follows from $f(z) \ll T^A$ in $|z| \le 4$ and $f(0) \ge 4 - 2\zeta(2) > 0$ that

$$q(T) \le n_f(2) \le 4 \int_2^4 \frac{n_f(r)}{r} \mathrm{d}r \ll \log T.$$

Conclusion

Introduction

Theorem (Riemann–von Mangoldt)

Let $N(T) = \# of \rho$ with $0 < \gamma \le T$. Then

$$N(T) = \frac{T}{2\pi} \log \frac{T}{2\pi} - \frac{T}{2\pi} + O(\log T).$$

- Counting nontrivial zeros
- 2 Counting zeros off the line
 - Basic estimates for $N(\sigma, T)$
 - Mollifier technique
 - Selberg's optimization
- Counting zeros on the line
- 4 Bibliography

Littlewood's formula

Theorem (Littlewood, 1924)

Let f be analytic in R and nonzero on ∂R ,

$$R_x = \{ z \in R : \Re(z) \ge x \},$$

$$v(x) = \# of zeros of f in R_x$$
.

Then

Introduction

$$2\pi \int_{x_1}^{x_2} v(x) dx = \int_{y_1}^{y_2} \log \left| \frac{f(x_1 + iv)}{f(x_2 + iv)} \right| dv + \int_{x_1}^{x_2} \arg \frac{f(u + iy_1)}{f(u + iy_2)} du.$$

Basic estimates for $N(\sigma, T)$

Introduction

Basic estimates for $N(\sigma, T)$

Theorem (Bohr-Landau, 1914)

For fixed $\sigma > \frac{1}{2}$, $N(\sigma, T) \ll_{\sigma} T$.

Basic estimates for $N(\sigma, T)$

Theorem (Bohr–Landau, 1914)

For fixed
$$\sigma > \frac{1}{2}$$
, $N(\sigma, T) \ll_{\sigma} T$.

Plugging $f = \zeta$ into Littlewood's formula, we have

$$2\pi \int_{\sigma}^{2} N(u, T) du = \int_{0}^{T} \log |\zeta(\sigma + it)| dt + O(\log T).$$

By convexity,

$$\int_0^T \log |\zeta(\sigma + it)| dt = \frac{T}{2} \cdot \frac{1}{T} \int_0^T \log |\zeta(\sigma + it)|^2 dt$$

$$\leq \frac{T}{2} \log \left\{ \frac{1}{T} \int_0^T |\zeta(\sigma + it)|^2 dt \right\}.$$

Basic estimates for $N(\sigma, T)$

Introduction

Second moment for ζ

For $\sigma > \frac{1}{2}$, it can be shown that

$$\int_0^T |\zeta(\sigma + it)|^2 dt \ll_\sigma T,$$

so we have

$$\int_{\sigma}^{2} N(u, T) \mathrm{d}u \ll_{\sigma} T.$$

Set $\sigma_1 = \frac{1}{2} + \frac{1}{2}(\sigma - \frac{1}{2})$. Then by monotonicity,

$$N(\sigma, T) \le \frac{1}{\sigma - \sigma_1} \int_{\sigma_1}^{\sigma} N(u, T) du \ll_{\sigma} T.$$

Basic estimates for $N(\sigma, T)$

Introduction

Conclusion

$$N(\sigma, T) \ll_{\sigma} T = o(T \log T) = o(N(T)), \quad \sigma > \frac{1}{2} \text{ fixed.}$$

Theorem (Bohr–Landau, 1914)

Let $\delta > 0$. Then almost all nontrivial zeros $\rho = \beta + i\gamma$ satisfy $|\beta - \frac{1}{2}| < \delta$.

Conclusion

$$N(\sigma, T) \ll_{\sigma} T = o(T \log T) = o(N(T)), \quad \sigma > \frac{1}{2} \text{ fixed.}$$

Theorem (Bohr–Landau, 1914)

Let $\delta > 0$. Then almost all nontrivial zeros $\rho = \beta + i\gamma$ satisfy $|\beta - \frac{1}{2}| < \delta$.

Remark

Littlewood (1924) improved this to

$$\delta = \frac{\Psi(|\gamma|) \log \log |\gamma|}{\log |\gamma|}$$

provided that $x \to +\infty \Rightarrow \Psi(x) \to +\infty$. Selberg (1942) removed $\log \log |\gamma|$.

On the distribution of zeros of $\zeta(s)$

Mollifier technique

Introduction

Mollifier technique

Bohr and Landau noticed that when $f = \zeta M - 1$, one has

$$h = 1 - f^2 = \zeta M(2 - \zeta M),$$

so a zero of $\zeta(s)$ must also be a zero of h, so by Littlewood's formula,

$$\int_{\sigma}^{2} [N(u, 2T) - N(u, T)] du \ll \int_{T}^{2T} \log|1 - f^{2}| dt$$

$$\ll \int_{T}^{2T} |f|^{2} dt = \int_{T}^{2T} |\zeta(\sigma + it)M(\sigma + it) - 1|^{2} dt,$$

so we can go beyond Littlewood by making $M(s) \approx 1/\zeta(s)$.

M(s) is called the mollifier.

Mollifier technique

Introduction

Choice of mollifier

The follow candidates for M(s) have been considered:

- Partial Euler product (Bohr and Landau): $\prod_{p \le X} \left(1 \frac{1}{p^s}\right)$,
- Dirichlet polynomial (Carlson): $\sum_{n \le X} \frac{\mu(n)}{n^s}$,

and $X \to \infty$ as $T \to \infty$.

Technical explanation

When $t \in [T, 2T]$, $\zeta(s)$ can be approximated by a Dirichlet polynomial

$$\zeta(s) = \sum_{n \le T} \frac{1}{n^s} + O(T^{-\sigma}),$$

so under Carlson's choice $M(s) = \sum_{m \le X} \mu(m) m^{-s}$,

$$f(s) \approx \sum_{m \le X} \frac{\mu(m)}{m^s} \sum_{n \le T} \frac{1}{n^s} - 1 = \sum_{X < n \le XT} \frac{a_n}{n^s},$$

where

$$a_n = \sum_{n=ab} \mu(a) \mathbf{1}_{a \le X} \mathbf{1}_{b \le T}.$$

Careful choice of *X* leads to improved estimates for $N(\sigma, T)$.

Improved estimates for $N(\sigma, T)$

- $N(\sigma,T) \ll_{\varepsilon} T^{4\sigma(1-\sigma)+\varepsilon}.$
- $N(\sigma, T) \ll T^{\frac{3}{2} \sigma} \log^5 T, \text{ better than 1 in } \sigma \in (\frac{1}{2}, \frac{3}{4}).$
- **1** Ingham (1940): $N(\sigma, T) \ll T^{\frac{3(1-\sigma)}{2-\sigma}} \log^5 T$.

Remark

Since the 1960s, estimates of $N(\sigma, T)$ near $\sigma = 1$ have been improved using "large value" estimates of Dirichlet polynomials, but Ingham's result remained optimal for $\frac{1}{2} \le \sigma \le \frac{3}{4}$ until Guth–Maynard (2024).

Introduction Mollifier technique

Estimates for $N(\sigma, T)$ near $\sigma = \frac{1}{2}$

When $\sigma \to \frac{1}{2}$, the aforementioned results became worse than trivial, and the best estimate in this direction was due to Littlewood (1924):

$$N(\sigma, T) \ll \frac{T}{\sigma - \frac{1}{2}} \log \frac{1}{\sigma - \frac{1}{2}}.$$

By introducing an optimal mollifier, Selberg (1942) removed $\log \frac{1}{\sigma^{-1}}$.

Selberg's optimization

To minimize $(s = \frac{1}{2} + it)$,

$$\int_T^{T+U} |\zeta(s)M(s)-1|^2 \mathrm{d}t \ll \int_T^{T+U} |\zeta(s)M(s)|^2 \mathrm{d}t + U,$$

Selberg considered a Dirichlet polynomial with undetermined coefficients:

$$M(s) = \sum_{n \le X} \frac{\lambda_n}{n^s}, \quad \lambda_1 = 1, \lambda_n \in \mathbb{R}$$

so one has

$$\int_T^{T+U} |\zeta(s)M(s)|^2 \mathrm{d}t = \sum_{m,n \leq X} \frac{\lambda_m \lambda_n}{\sqrt{mn}} \int_T^{T+U} |\zeta(s)|^2 \left(\frac{n}{m}\right)^{it} \mathrm{d}t.$$

Selberg's optimization

By AFE and saddle point method, Selberg showed that

Lemma

For appropriate X, U, $s = \frac{1}{2} + it$, and $m, n \le X$ coprime, one has

$$\int_{T}^{T+U} |\zeta(s)|^{2} \left(\frac{n}{m}\right)^{it} dt \sim \frac{U}{\sqrt{mn}} \log \frac{Te^{2\gamma}}{2\pi mn}.$$

Hence, we have

$$\int_T^{T+U} |\zeta(s)M(s)|^2 \mathrm{d}t \sim U \sum_{m,n \leq X} \frac{\lambda_m \lambda_n}{mn}(m,n) \log \frac{Te^{2\gamma}(m,n)^2}{2\pi mn}.$$

Selberg's optimization

Introduction

Selberg's optimization

$$\int_{T}^{T+U} |\zeta(s)M(s)|^{2} \mathrm{d}t \sim U \sum_{m,n \leq X} \frac{\lambda_{m}\lambda_{n}}{mn} (m,n) \log \frac{Te^{2\gamma}(m,n)^{2}}{2\pi mn}.$$

The log term is a distraction. It suffices to minimize

$$Q = \sum_{m,n \le X} \frac{\Lambda_m \Lambda_n}{mn} (m,n).$$

subjected to $\lambda_1 = 1$. By tricky Cauchy–Schwarzing, we arrive at

$$\lambda_n \sim \mu(n) \frac{\log X/n}{\log X}, \quad Q \sim \frac{1}{\log X}.$$

The same optimization procedure was later used in Selberg's Λ^2 -sieve (1947).

Conclusion

Eventually, we have for $X = T^{\frac{1}{100}}$ and $U = T^{\frac{14}{15}}$ that

$$\int_T^{T+U} |\zeta(s)M(s)|^2 \mathrm{d}t \ll U\left(\frac{\log T}{\log X}\right) \ll U,$$

which implies

$$\int_{\frac{1}{2}}^{2} [N(u, T + U) - N(u, T)] du \ll U,$$

so

$$N(\sigma,T) \le \frac{1}{\sigma - \frac{1}{2}} \int_{\frac{1}{2}}^{2} N(u,T) du \ll \frac{T}{\sigma - \frac{1}{2}}.$$

Conclusion

If $\Psi(x) \to +\infty$, then we see that under $\sigma = \frac{1}{2} + \frac{\Psi(T)}{\log T}$, one has

$$N(\sigma, T) \ll \frac{T \log T}{\Psi(T)} = o(T \log T) = o(N(T)),$$

SO

Theorem (Selberg, 1942)

Almost all nontrivial zeros $\rho = \beta + i\gamma$ satsify

$$\left|\beta - \frac{1}{2}\right| < \frac{\Psi(|\gamma|)}{\log|\gamma|}.$$

Moral of Selberg's optimization

Selberg's optimal choice of λ_n satisfies

$$\lambda_n \sim \mu(n) \frac{\log X/n}{\log X} = \mu(n) \left(1 - \frac{\log n}{\log X}\right),$$

which suggests that when making Dirichlet polynomial approximations, it is better to attach a weight:

$$\sum_{n \le X} \frac{\alpha_n}{n^s} \left(1 - \frac{\log n}{\log X} \right).$$

- Counting nontrivial zeros
- 2 Counting zeros off the line
- 3 Counting zeros on the line
 - $N_0(T) \to \infty$
 - Hardy–Littlewood lower bound $N_0(T) \gg T$
 - Selberg's $N_0(T) \gg T \log T$
- 4 Bibliography

By elementary real analysis, we know that

Proposition

Let f be continuous and real-valued on [a, b]. If

$$\left| \int_{a}^{b} f(t) dt \right| < \int_{a}^{b} |f(t)| dt,$$

then f must have a sign change in (a, b).

Task: Find f(t) whose real zeros coincide with those of $\zeta(\frac{1}{2} + it)$.

Hardy's Z-function

Introduction

Recall from the functional equation that

$$\chi(s) = \frac{\zeta(s)}{\zeta(1-s)} = 2^s \pi^{s-1} \sin \frac{\pi s}{2} \Gamma(1-s),$$

which has no zeros in $0 < \sigma < 1$, so χ has a well defined square root.

Moreover,
$$\chi(s)\chi(1-s) = 1$$
, so when $s = \frac{1}{2} + it$,

$$Z(t) := \chi(s)^{-\frac{1}{2}} \zeta(s)$$

is a real-valued even function satisfying $|Z(t)| = |\zeta(\frac{1}{2} + it)|$.

Introduction
$$0000$$
 $N_0(T) \to \infty$

$$N_0(T) \to +\infty$$

Let

$$I = \int_T^{T+H} Z(t) dt, \quad J = \int_T^{T+H} |Z(t)| dt.$$

Then it suffices to show |I| < J for all large T.

By some intensive computations, we have

$$|I| \ll_{\varepsilon} T^{\frac{3}{4} + \frac{\varepsilon}{2}}, \quad 2 \le H \le T.$$

Estimates for J

For J, one has

$$J = \int_{T}^{T+H} |\zeta(\frac{1}{2} + it)| dt \ge \left| \int_{\frac{1}{2} + iT}^{\frac{1}{2} + i(T+H)} \zeta(s) ds \right|.$$

By Cauchy's integral theorem, we can move to $\sigma = 2$,

$$\int_{\frac{1}{2}+iT}^{\frac{1}{2}+i(T+H)} \zeta(s) ds = i \int_{T}^{T+H} \sum_{n\geq 1} \frac{1}{n^{2+it}} dt + O_{\varepsilon}(T^{\frac{1}{4}+\varepsilon})$$
$$= iH + O\left(\sum_{n\geq 2} \frac{1}{n^{2} \log n}\right) + O_{\varepsilon}(T^{\frac{1}{4}+\varepsilon}),$$

so for $H \gg T^{\frac{1}{4}+\varepsilon}$, this is $\gg H$.

Conclusion

Setting $H = T^{\frac{3}{4} + \varepsilon}$, we see that

$$J \gg H = T^{\frac{3}{4} + \varepsilon} > T^{\frac{3}{4} + \frac{\varepsilon}{2}} \gg |I|.$$

Theorem (Hardy-Landau)

Let $\varepsilon > 0$. Then for all $T \ge T_0(\varepsilon)$, Z(t) has a sign change in $(T, T + T^{\frac{3}{4} + \varepsilon})$.

Exercise: Deduce that $N_0(T) \gg T^{\frac{1}{4} - \varepsilon}$.

Hardy-Littlewood zero detecting device

Instead of considering one interval, we look at multiple intervals together:

$$I(t) = \int_t^{t+H} f(u) du, \quad J(t) = \int_t^{t+H} |f(u)| du,$$

where f(u) is related to $\zeta(\frac{1}{2} + iu)$ and $t \times T$.

Key observation: If f has no zeros in $(t_0, t_0 + 2H)$, then |I(t)| = J(t) in $(t_0, t_0 + H)$.

Hardy-Littlewood zero detecting device

Define

Introduction

$$S = \{ t \in (T, 2T) : |I(t)| = J(t) \}$$

and a system of pairwise disjoint intervals:

$$j_k = (T + 2(k-1)H, T + 2kH), \quad 1 \le k \le m = \lfloor T/2H \rfloor.$$

If f does not change sign in $j_{k_1}, j_{k_2}, \dots, j_{k_r}$, then

$$rH \le \sum_{\ell=1}^{r} \mu(j_{k_{\ell}} \cap S) \le \mu(S) \Rightarrow r \le \frac{\mu(S)}{H},$$

where μ is the Lebesgue measure on \mathbb{R} , so

$$N_0(2T) - N_0(T) \ge m - r \ge \frac{T}{2H} - \frac{\mu(S)}{H} - 1.$$

Problem setup

Since

Introduction

$$N_0(2T) - N_0(T) \ge m - r \ge \frac{T}{2H} - \frac{\mu(S)}{H} - 1,\tag{1}$$

it suffices to provide an upper bound for $\mu(S)$. Since

$$\int_{S} J(t)dt = \int_{S} |I(t)|dt \le \mu(S)^{\frac{1}{2}} ||I||_{L^{2}},$$
(2)

so we need an upper bound for $||I||_{L^2}$ and a lower bound for J(t).

Hardy–Littlewood lower bound $N_0(T) \gg T$

Upper bound for $||I||_{L^2}$

We choose

Introduction

$$f(u) = Z(u) = \chi(\frac{1}{2} + iu)^{-\frac{1}{2}} \zeta(\frac{1}{2} + iu).$$

After some brute-force computations, one has $||I||_{L^2} \ll H^{\frac{1}{2}}T^{\frac{1}{2}}$, so the inequality (2) becomes

$$\mu(S)^{\frac{1}{2}}H^{\frac{1}{2}}T^{\frac{1}{2}} \gg \int_{S} J(t)dt.$$

Hardy–Littlewood lower bound $N_0(T) \gg T$

Lower bound for J(t)

Since $|Z(u)| = |\zeta(\frac{1}{2} + iu)|$, one has

$$J(t) \ge \left| \int_t^{t+H} \zeta(\frac{1}{2} + iu) du \right|.$$

Using the approximation $\zeta(\frac{1}{2} + iu) = \sum_{n \le T} n^{-\frac{1}{2} - iu} + O(T^{-\frac{1}{2}})$, one has

$$\int_{t}^{t+H} \zeta(\frac{1}{2} + iu) du = H - iG(t) + O(HT^{-\frac{1}{2}}),$$

where

Introduction

$$G(t) = \sum_{2 \le n \le T} \frac{1 - n^{-iH}}{n^{\frac{1}{2} + it} \log n}.$$

Hardy-Littlewood lower bound $N_0(T) \gg T$

Lower bound for J(t)

Thus, we have

Introduction

$$J(t) > C_1 H - C_2 |G(t)|.$$

Integrating over S, we get

$$\mu(S)^{\frac{1}{2}}H^{\frac{1}{2}}T^{\frac{1}{2}} > C_1\mu(S)H - C_2\int_S |G(t)|dt.$$

By Cauchy–Schwarz and Parseval, one has

$$\int_{S} |G(t)| \mathrm{d}t \ll \mu(S)^{\frac{1}{2}} T^{\frac{1}{2}},$$

so $\mu(S)H \ll \mu(S)^{\frac{1}{2}}H^{\frac{1}{2}}T^{\frac{1}{2}} + \mu(S)^{\frac{1}{2}}T^{\frac{1}{2}}$, meaning for $H \ge 1$,

$$\mu(S) < C_3 T H^{-1}.$$

Hardy–Littlewood lower bound $N_0(T) \gg T$

Conclusion

Introduction

Plugging $\mu(S) < C_3 T H^{-1}$ into the lower bound (1), we have

$$N_0(2T) - N_0(T) > \frac{T}{2H} - \frac{C_3T}{H^2} = \frac{T}{H} \left(\frac{1}{2} - \frac{C_3}{H} \right),$$

which is $\gg TH^{-1}$ provided that H is large and fixed. Hence, we have

Theorem (Hardy–Littlewood, 1921)

As
$$T \to +\infty$$
, $N_0(T) \gg T$.

The Hardy–Littlewood framework

The proof method is summarized as follows

- Let H > 0 be an undetermined parameter.
- Estimate $I(t) = \int_{t}^{t+H} f(u) du$ and $J(t) = \int_{t}^{t+H} |f(u)| du$.
- Bound the measure of $S = \{t \in (T, 2T) : |I(t)| = J(t)\}.$
- Plugging the upper bound estimate for $\mu(S)$ into

$$N_0(2T) - N_0(T) \ge \frac{T}{2H} - \frac{\mu(S)}{H} - 1$$

and conclude.

Problem: HL's choice of f does not allow this argument to run when $H \to 0$.

Hardy–Littlewood framework with mollifiers

Selberg (1942) overcame the problem by attaching a mollifier:

$$f(u) = Z(u)|\phi(\frac{1}{2} + iu)|^2,$$

where $\phi(s)$ is an approximation to $\{\zeta(s)\}^{-\frac{1}{2}}$.

Slogan: It is easier to work with even powers of modulus.

Selberg's choice of mollifier

Based on our experience with $N(\sigma, T)$, the optimal $\phi(s)$ takes the form of

$$\phi(s) = \sum_{n \le X} \frac{\alpha_n}{n^s} \left(1 - \frac{\log n}{\log X} \right),\,$$

where α_n satisfies $\sum_{n\geq 1} \alpha_n n^{-s} = \{\zeta(s)\}^{-\frac{1}{2}}$.

This allows Selberg to obtain $\mu(S) < C_4 T / \sqrt{H \log T}$, so

$$N_0(2T) - N_0(T) > \frac{T}{H} \left(\frac{1}{2} - \frac{C_4}{\sqrt{H \log T}} \right),$$

which is $\gg T \log T$ provided that $H = A/\log T$ and $A \gg 1$.

Remark on Selberg's method

Before obtaining $N_0(T) \gg T \log T$, Selberg also worked with partial Euler product

$$\phi(s) = \prod_{p \le X} \left(1 - \frac{1}{2p^s} - \frac{1}{8p^{2s}} \right)$$

but only achieved $N_0(T) \gg T \log \log \log T$.

Note: By binomial theorem,

$$\left(1 - \frac{1}{p^s}\right)^{\frac{1}{2}} = 1 - \frac{1}{2p^s} - \frac{1}{8p^{2s}} + \dots$$

Further works

• Selberg (1942):

$$\alpha = \liminf_{T \to +\infty} \frac{N_0(T)}{N(T)} > 0.$$

After Selberg, there are further developments on α :

- S. H. Min 闵嗣鹤 (1956): $\alpha \geq \frac{1}{60000}$ by tracking Selberg's constants,
- Levinson (1974): $\alpha \ge 0.342$ using a very different method,
- Conrey (1989): $\alpha \ge 0.4077$ via Kloosterman sums, etc.;
- Pratt–Robles–Zaharescu–Zeindler (2020): $\alpha \ge 0.416$.

Bibliography

Introduction

H. M. Edwards (1974)

Riemann's zeta function.

Academic Press.

A. Selberg (1946).

The zeta-function and the Riemann hypothesis.

C. R. Dixième Congrès Math. Scandinaves, Copenhagen (1946). pp. 187–200

A. Selberg (1989)

Collected works (vol. 1).

Springer-Verlag Berlin Heidelberg.

E. C. Titchmarsh (1986).

The theory of the Riemann zeta-function (2nd ed.).

Oxford University Press.

