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Introduction

Let 𝜁 (𝑠) be the Riemann zeta-function and 𝑠 = 𝜎 + 𝑖𝑡. We know

Dirichlet series: 𝜁 (𝑠) = ∑
𝑛≥1 𝑛

−𝑠 when 𝜎 > 1,

Functional equation: 𝜁 (𝑠) = 𝜒(𝑠)𝜁 (1 − 𝑠), where

𝜒(𝑠) = 2(2𝜋)𝑠−1 sin
𝜋𝑠

2
Γ(1 − 𝑠).

Trivial zeros: ∀𝑚 ∈ N, 𝜁 (−2𝑚) = 0.

The nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 satisfy 0 ≤ 𝛽 ≤ 1. (PNT: 0 < 𝛽 < 1).

Riemann hypothesis: If 𝜌 = 𝛽 + 𝑖𝛾 is a nontrivial zero, then 𝛽 = 1
2 .
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Counting zeros

The nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 satisfy 0 ≤ 𝛽 ≤ 1. (PNT: 0 < 𝛽 < 1).

Riemann hypothesis: If 𝜌 = 𝛽 + 𝑖𝛾 is a nontrivial zero, then 𝛽 = 1
2 .

The region 0 ≤ 𝜎 ≤ 1 is called the critical strip, and the line 𝜎 = 1
2 is known

as the critical line. We will discuss

1 Counting nontrivial zeros: 𝑁 (𝑇) = #{𝜌 : 0 < 𝛾 ≤ 𝑇},
2 Zeros off the critical line: 𝑁 (𝜎,𝑇) = #{𝜌 : 𝛽 ≥ 𝜎, 0 < 𝛾 ≤ 𝑇},
3 Zeros on the critical line: 𝑁0(𝑇) = #{𝜌 : 𝛽 = 1

2 , 0 < 𝛾 ≤ 𝑇}.
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Highlights

We will go over the following classical results:

von Mangoldt (1905): 𝑁 (𝑇) ∼ (2𝜋)−1𝑇 log𝑇,

Bohr–Landau (1914): 𝑁 (𝜎,𝑇) ≪𝜎 𝑇 for fixed 𝜎 > 1
2 .

Hardy–Littlewood (1921): 𝑁0(𝑇) ≫ 𝑇 .

Selberg (1942): 𝑁0(𝑇) ≫ 𝑁 (𝑇), or a positive proportion of 𝜌 satisfies
RH.
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Riemann 𝜉-function

Define
𝜉 (𝑠) = 1

2
𝑠(𝑠 − 1)𝜋− 𝑠

2 Γ
( 𝑠
2

)
𝜁 (𝑠).

Then

𝜉 (𝑠) is entire.

𝜉 (𝑠) = 𝜉 (1 − 𝑠).

The zeros of 𝜉 (𝑠) coincide with the nontrivial zeros of 𝜁 (𝑠).
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𝑁 (𝑇 ) → ∞

𝑁 (𝑇) → ∞

Recall complex function theory:

Definition (Entire function of finite order)
An entire function 𝑓 (𝑧) is of order 0 ≤ 𝜆 < ∞ if

| 𝑓 (𝑧) | ≪𝜀 𝑒 |𝑧 |
𝜆+𝜀

, 𝑧 → ∞.

Theorem (Classification of nonzero entire functions of finite order)
If 𝑓 (𝑧) is an entire function of order 𝜆 without zeros, then 𝑓 (𝑧) = 𝑒𝑝 (𝑧) , where
𝑝(𝑧) is a polynomial of degree ≤ 𝜆.
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𝑁 (𝑇 ) → ∞

Proof idea

Theorem
If 𝑓 (𝑧) is an entire function of order 𝜆 without zeros, then 𝑓 (𝑧) = 𝑒𝑝 (𝑧) , where
𝑝(𝑧) is a polynomial of degree ≤ 𝜆.

Corollary
If 𝑓 (𝑧) is an entire function of order 𝑛 ∈ N with finitely many zeros, then
| 𝑓 (𝑧) | ≪ 𝑒𝐶 |𝑧 |𝑛 .

By the theorem, 𝑓 (𝑧) = 𝑒𝑝 (𝑧)𝑞(𝑧) for polynomial 𝑝, 𝑞 s.t. deg 𝑝 ≤ 𝑛, so

| 𝑓 (𝑧) | ≪ (1 + |𝑧 |)deg 𝑞𝑒𝐶0 |𝑧 |deg 𝑝 ≪ 𝑒𝐶 |𝑧 |𝑛 .

We will show that 𝜉 (𝑠) is of order 1 but log |𝜉 (𝑠) | is not ≤ 𝐶 |𝑠 |.
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𝑁 (𝑇 ) → ∞

Proof of 𝑁 (𝑇) → ∞

By very tricky integral transforms, it can be proved that

𝜉

(
1
2
+ 𝑧

)
=

∑
𝑛≥0

𝑐𝑛𝑧
2𝑛, 𝑐𝑛 ≥ 0.

Thus, we have for |𝑧 | = 𝑅 ≥ 2 that����𝜉 (
1
2
+ 𝑧

)���� ≤ 𝜉

(
1
2
+ 𝑅

)
≍ 𝑅2𝜋− 𝑅

2 Γ

(
𝑅

2
− 1

4

)
= 𝑒

1
2 𝑅 log 𝑅+𝑂 (𝑅) ,

so 𝜉 (𝑠) is of order 1.

If 𝜉 (𝑠) only has finitely many zeros, then 𝜉
(

1
2 + 𝑅

)
≤ 𝑒𝐴𝑅, which is a

contradiction.
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Asymptotic formula for 𝑁 (𝑇 )

Asymptotic formula for 𝑁 (𝑇)

Theorem (von Mangoldt)
We have for 𝑇 → +∞,

𝑁 (𝑇) = 𝑇

2𝜋
log

𝑇

2𝜋
− 𝑇

2𝜋
+𝑂 (log𝑇).

Riemann (1859) stated it, but the first proof was due to von Mangoldt.
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Asymptotic formula for 𝑁 (𝑇 )

Asymptotic formula for 𝑁 (𝑇)

Because 𝜉 (𝑠) has no real zeros,

2𝑁 (𝑇) = 1
2𝜋

Δ𝛾1+𝛾2+𝛾3+𝛾4 arg 𝜉 (𝑠).

By 𝜉 (𝑠) = 𝜉 (1 − 𝑠) and 𝜉 (𝑠) = 𝜉 (𝑠),

Δ𝛾2 arg 𝜉 (𝑠) = Δ𝛾4 arg 𝜉 (𝑠),

Δ𝛾3 arg 𝜉 (𝑠) = Δ𝛾1 arg 𝜉 (𝑠),

Δ𝛾4 arg 𝜉 (𝑠) = Δ𝛾1 arg 𝜉 (𝑠).

⇒ 𝑁 (𝑇) = 1
𝜋
Δ𝛾1 arg 𝜉 (𝑠).

R

𝑖R

𝛾1𝛾2

𝛾3 𝛾4

𝜎 = 1
2

•2 + 𝑖𝑇•−1 + 𝑖𝑇

•
−1 − 𝑖𝑇

•
2 − 𝑖𝑇
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Asymptotic formula for 𝑁 (𝑇 )

Decomposition of arg 𝜉 (𝑠)

𝑁 (𝑇) = 1
𝜋
Δ𝛾1 arg 𝜉 (𝑠) = 1

𝜋
Δ𝛾1 arg

[
1
2
𝑠(𝑠 − 1)𝜋− 𝑠

2 Γ
( 𝑠
2

)]
+ 1
𝜋
Δ𝛾1 arg 𝜁 (𝑠)︸           ︷︷           ︸

𝑆 (𝑇 )

,

where

Δ𝛾1 arg[𝑠(𝑠 − 1)] = arg
(
−1

4
− 𝑇2

)
= 𝜋, Δ𝛾1 arg(𝜋− 𝑠

2 ) = −𝑇
2

log 𝜋.

By Stirling,

Δ𝛾1 arg Γ
( 𝑠
2

)
= arg Γ

(
1
2 + 𝑖𝑇

2

)
=
𝑇

2
log

𝑇

2
− 𝜋

8
− 𝑇

2
+𝑂

(
1
𝑇

)
.
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Asymptotic formula for 𝑁 (𝑇 )

Main term for 𝑁 (𝑇)

Combining these results, we have

𝑁 (𝑇) = 𝑇

2𝜋
log

𝑇

2𝜋
− 𝑇

2𝜋
+ 7

8
+ 𝑆(𝑇) +𝑂

(
1
𝑇

)
,

where

𝑆(𝑇) = 1
𝜋
Δ𝛾1 arg 𝜁 (𝑠)

=
1
𝜋
Δ2+𝑖𝑇

2 arg 𝜁 (𝑠) + 1
𝜋
Δ

1
2+𝑖𝑇
2+𝑖𝑇 arg 𝜁 (𝑠).
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Asymptotic formula for 𝑁 (𝑇 )

Bounding 𝑆(𝑇)

Theorem (von Mangoldt, 1905; Backlund, 1918)
As 𝑇 → +∞, 𝑆(𝑇) = 𝑂 (log𝑇).

When 𝜎 = 2,

ℜ𝜁 (𝑠) = 1 +
∑
𝑛≥2

cos(𝑡 log 𝑛)
𝑛2 ≥ 1 −

∑
𝑛≥2

1
𝑛2

≥ 1 −
∫ +∞

2

d𝑥
𝑥2 = 1 − 1

2
=

1
2
> 0,

so | arg 𝜁 (𝑠) | < 𝜋
2 on 𝜎 = 2, which means

|Δ2+𝑖𝑇
2 arg 𝜁 (𝑠) | = | arg 𝜁 (2 + 𝑖𝑇) − 0| < 𝜋

2
.
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2
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1
2
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Asymptotic formula for 𝑁 (𝑇 )

Bounding 𝑆(𝑇)

For Δ
1
2+𝑖𝑇
2+𝑖𝑇 arg 𝜁 (𝑠), if 𝛼 < 𝛽 are successive real zeros of 𝜂(𝜎) = ℜ𝜁 (𝜎 + 𝑖𝑇)

in ( 1
2 , 2), then 𝜂(𝜎) does not change sign in [𝛼, 𝛽], so

|Δ𝛼+𝑖𝑇
𝛽+𝑖𝑇 arg 𝜁 (𝑠) | ≤ 𝜋.

Let 𝑞(𝑇) = # of zeros of 𝜂(𝜎) in ( 1
2 , 2). Then

|Δ
1
2+𝑖𝑇
2+𝑖𝑇 arg 𝜁 (𝑠) | ≤ (𝑞(𝑇) + 1)𝜋,

so one has
|𝑆(𝑇) | ≤ 𝑞(𝑇) + 3

2
.

It suffices to prove 𝑞(𝑇) = 𝑂 (log𝑇).
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Asymptotic formula for 𝑁 (𝑇 )

Bounding 𝑞(𝑇)

Theorem (Jensen)
Let 𝑓 be analytic in |𝑧 | ≤ 𝑅 s.t. 𝑓 (0) ≠ 0 and

𝑛 𝑓 (𝑟) = # of zeros of 𝑓 (𝑧) in |𝑧 | ≤ 𝑟.

Then ∫ 𝑅

0

𝑛 𝑓 (𝑟)
𝑟

d𝑟 =
∫ 1

0
log | 𝑓 (𝑅𝑒2𝜋𝑖𝑥) |d𝑥 − log | 𝑓 (0) |.

Let 𝑓 (𝑧) = 𝜁 (𝑧 + 2 + 𝑖𝑇) + 𝜁 (𝑧 + 2 − 𝑖𝑇), so it follows from 𝑓 (𝑧) ≪ 𝑇 𝐴 in
|𝑧 | ≤ 4 and 𝑓 (0) ≥ 4 − 2𝜁 (2) > 0 that

𝑞(𝑇) ≤ 𝑛 𝑓 (2) ≤ 4
∫ 4

2

𝑛 𝑓 (𝑟)
𝑟

d𝑟 ≪ log𝑇.
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Asymptotic formula for 𝑁 (𝑇 )

Conclusion

Theorem (Riemann–von Mangoldt)
Let 𝑁 (𝑇) = # of 𝜌 with 0 < 𝛾 ≤ 𝑇 . Then

𝑁 (𝑇) = 𝑇

2𝜋
log

𝑇

2𝜋
− 𝑇

2𝜋
+𝑂 (log𝑇).
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Littlewood’s formula

Theorem (Littlewood, 1924)
Let 𝑓 be analytic in 𝑅 and nonzero on 𝜕𝑅,

𝑅𝑥 = {𝑧 ∈ 𝑅 : ℜ(𝑧) ≥ 𝑥},

𝜈(𝑥) = # of zeros of 𝑓 in 𝑅𝑥 .

Then

2𝜋
∫ 𝑥2

𝑥1

𝜈(𝑥)d𝑥 =
∫ 𝑦2

𝑦1

log
���� 𝑓 (𝑥1 + 𝑖𝑣)
𝑓 (𝑥2 + 𝑖𝑣)

���� d𝑣
+

∫ 𝑥2

𝑥1

arg
𝑓 (𝑢 + 𝑖𝑦1)
𝑓 (𝑢 + 𝑖𝑦2)

d𝑢.

•
𝑥1 + 𝑖𝑦1

•
𝑥2 + 𝑖𝑦1

•
𝑥1 + 𝑖𝑦2 •

𝑥2 + 𝑖𝑦2

𝜕𝑅

𝑅𝑥
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Basic estimates for 𝑁 (𝜎, 𝑇 )

Basic estimates for 𝑁 (𝜎,𝑇)
Theorem (Bohr–Landau, 1914)
For fixed 𝜎 > 1

2 , 𝑁 (𝜎,𝑇) ≪𝜎 𝑇 .

Plugging 𝑓 = 𝜁 into Littlewood’s formula, we have

2𝜋
∫ 2

𝜎
𝑁 (𝑢, 𝑇)d𝑢 =

∫ 𝑇

0
log |𝜁 (𝜎 + 𝑖𝑡) |d𝑡 +𝑂 (log𝑇).

By convexity,∫ 𝑇

0
log |𝜁 (𝜎 + 𝑖𝑡) |d𝑡 = 𝑇

2
· 1
𝑇

∫ 𝑇

0
log |𝜁 (𝜎 + 𝑖𝑡) |2d𝑡

≤ 𝑇

2
log

{
1
𝑇

∫ 𝑇

0
|𝜁 (𝜎 + 𝑖𝑡) |2d𝑡

}
.
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Basic estimates for 𝑁 (𝜎, 𝑇 )

Second moment for 𝜁

For 𝜎 > 1
2 , it can be shown that∫ 𝑇

0
|𝜁 (𝜎 + 𝑖𝑡) |2d𝑡 ≪𝜎 𝑇,

so we have ∫ 2

𝜎
𝑁 (𝑢, 𝑇)d𝑢 ≪𝜎 𝑇.

Set 𝜎1 = 1
2 + 1

2 (𝜎 − 1
2 ). Then by monotonicity,

𝑁 (𝜎,𝑇) ≤ 1
𝜎 − 𝜎1

∫ 𝜎

𝜎1

𝑁 (𝑢, 𝑇)d𝑢 ≪𝜎 𝑇.
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Basic estimates for 𝑁 (𝜎, 𝑇 )

Conclusion

𝑁 (𝜎,𝑇) ≪𝜎 𝑇 = 𝑜(𝑇 log𝑇) = 𝑜(𝑁 (𝑇)), 𝜎 >
1
2

fixed.

Theorem (Bohr–Landau, 1914)
Let 𝛿 > 0. Then almost all nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 satisfy |𝛽 − 1

2 | < 𝛿.

Remark
Littlewood (1924) improved this to

𝛿 =
Ψ( |𝛾 |) log log |𝛾 |

log |𝛾 |

provided that 𝑥 → +∞ ⇒ Ψ(𝑥) → +∞. Selberg (1942) removed log log |𝛾 |.
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Basic estimates for 𝑁 (𝜎, 𝑇 )

Conclusion

𝑁 (𝜎,𝑇) ≪𝜎 𝑇 = 𝑜(𝑇 log𝑇) = 𝑜(𝑁 (𝑇)), 𝜎 >
1
2

fixed.

Theorem (Bohr–Landau, 1914)
Let 𝛿 > 0. Then almost all nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 satisfy |𝛽 − 1

2 | < 𝛿.

Remark
Littlewood (1924) improved this to

𝛿 =
Ψ( |𝛾 |) log log |𝛾 |

log |𝛾 |

provided that 𝑥 → +∞ ⇒ Ψ(𝑥) → +∞. Selberg (1942) removed log log |𝛾 |.
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Mollifier technique

Mollifier technique

Bohr and Landau noticed that when 𝑓 = 𝜁𝑀 − 1, one has

ℎ = 1 − 𝑓 2 = 𝜁𝑀 (2 − 𝜁𝑀),

so a zero of 𝜁 (𝑠) must also be a zero of ℎ, so by Littlewood’s formula,∫ 2

𝜎
[𝑁 (𝑢, 2𝑇) − 𝑁 (𝑢, 𝑇)]d𝑢 ≪

∫ 2𝑇

𝑇
log |1 − 𝑓 2 |d𝑡

≪
∫ 2𝑇

𝑇
| 𝑓 |2d𝑡 =

∫ 2𝑇

𝑇
|𝜁 (𝜎 + 𝑖𝑡)𝑀 (𝜎 + 𝑖𝑡) − 1|2d𝑡,

so we can go beyond Littlewood by making 𝑀 (𝑠) ≈ 1/𝜁 (𝑠).

𝑀 (𝑠) is called the mollifier.
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Mollifier technique

Choice of mollifier

The follow candidates for 𝑀 (𝑠) have been considered:

Partial Euler product (Bohr and Landau):
∏
𝑝≤𝑋

(
1 − 1

𝑝𝑠

)
,

Dirichlet polynomial (Carlson):
∑
𝑛≤𝑋

𝜇(𝑛)
𝑛𝑠

,

and 𝑋 → ∞ as 𝑇 → ∞.
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Mollifier technique

Technical explanation

When 𝑡 ∈ [𝑇, 2𝑇], 𝜁 (𝑠) can be approximated by a Dirichlet polynomial

𝜁 (𝑠) =
∑
𝑛≤𝑇

1
𝑛𝑠

+𝑂 (𝑇−𝜎),

so under Carlson’s choice 𝑀 (𝑠) = ∑
𝑚≤𝑋 𝜇(𝑚)𝑚−𝑠,

𝑓 (𝑠) ≈
∑
𝑚≤𝑋

𝜇(𝑚)
𝑚𝑠

∑
𝑛≤𝑇

1
𝑛𝑠

− 1 =
∑

𝑋<𝑛≤𝑋𝑇

𝑎𝑛
𝑛𝑠

,

where
𝑎𝑛 =

∑
𝑛=𝑎𝑏

𝜇(𝑎)1𝑎≤𝑋1𝑏≤𝑇 .

Careful choice of 𝑋 leads to improved estimates for 𝑁 (𝜎,𝑇).
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Mollifier technique

Improved estimates for 𝑁 (𝜎,𝑇)

1 𝑁 (𝜎,𝑇) ≪𝜀 𝑇4𝜎 (1−𝜎)+𝜀 .

2 𝑁 (𝜎,𝑇) ≪ 𝑇
3
2 −𝜎 log5 𝑇 , better than 1 in 𝜎 ∈ ( 1

2 ,
3
4 ).

3 If 𝜁 ( 1
2 + 𝑖𝑡) ≪ (1 + |𝑡 |)𝛼, then 𝑁 (𝜎,𝑇) ≪ 𝑇2(1+2𝛼) (1−𝜎) log5 𝑇 .

4 Ingham (1940): 𝑁 (𝜎,𝑇) ≪ 𝑇
3(1−𝜎)

2−𝜎 log5 𝑇 .

Remark
Since the 1960s, estimates of 𝑁 (𝜎,𝑇) near 𝜎 = 1 have been improved using
“large value” estimates of Dirichlet polynomials, but Ingham’s result
remained optimal for 1

2 ≤ 𝜎 ≤ 3
4 until Guth–Maynard (2024).
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Mollifier technique

Estimates for 𝑁 (𝜎,𝑇) near 𝜎 = 1
2

When 𝜎 → 1
2 , the aforementioned results became worse than trivial, and the

best estimate in this direction was due to Littlewood (1924):

𝑁 (𝜎,𝑇) ≪ 𝑇

𝜎 − 1
2

log
1

𝜎 − 1
2
.

By introducing an optimal mollifier, Selberg (1942) removed log 1
𝜎− 1

2
.
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Selberg’s optimization

Selberg’s optimization

To minimize (𝑠 = 1
2 + 𝑖𝑡),∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠)𝑀 (𝑠) − 1|2d𝑡 ≪

∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠)𝑀 (𝑠) |2d𝑡 +𝑈,

Selberg considered a Dirichlet polynomial with undetermined coefficients:

𝑀 (𝑠) =
∑
𝑛≤𝑋

𝜆𝑛
𝑛𝑠

, 𝜆1 = 1, 𝜆𝑛 ∈ R

so one has∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠)𝑀 (𝑠) |2d𝑡 =

∑
𝑚,𝑛≤𝑋

𝜆𝑚𝜆𝑛√
𝑚𝑛

∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠) |2

( 𝑛
𝑚

) 𝑖𝑡
d𝑡.
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Selberg’s optimization

Selberg’s optimization

By AFE and saddle point method, Selberg showed that

Lemma
For appropriate 𝑋 , 𝑈, 𝑠 = 1

2 + 𝑖𝑡, and 𝑚, 𝑛 ≤ 𝑋 coprime, one has∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠) |2

( 𝑛
𝑚

) 𝑖𝑡
d𝑡 ∼ 𝑈

√
𝑚𝑛

log
𝑇𝑒2𝛾

2𝜋𝑚𝑛
.

Hence, we have∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠)𝑀 (𝑠) |2d𝑡 ∼ 𝑈

∑
𝑚,𝑛≤𝑋

𝜆𝑚𝜆𝑛
𝑚𝑛

(𝑚, 𝑛) log
𝑇𝑒2𝛾 (𝑚, 𝑛)2

2𝜋𝑚𝑛
.
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Selberg’s optimization

Selberg’s optimization

∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠)𝑀 (𝑠) |2d𝑡 ∼ 𝑈

∑
𝑚,𝑛≤𝑋

𝜆𝑚𝜆𝑛
𝑚𝑛

(𝑚, 𝑛) log
𝑇𝑒2𝛾 (𝑚, 𝑛)2

2𝜋𝑚𝑛
.

The log term is a distraction. It suffices to minimize

𝑄 =
∑

𝑚,𝑛≤𝑋

𝜆𝑚𝜆𝑛
𝑚𝑛

(𝑚, 𝑛).

subjected to 𝜆1 = 1. By tricky Cauchy–Schwarzing, we arrive at

𝜆𝑛 ∼ 𝜇(𝑛) log 𝑋/𝑛
log 𝑋

, 𝑄 ∼ 1
log 𝑋

.

The same optimization procedure was later used in Selberg’s Λ2-sieve (1947).
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Selberg’s optimization

Conclusion

Eventually, we have for 𝑋 = 𝑇
1

100 and 𝑈 = 𝑇
14
15 that∫ 𝑇+𝑈

𝑇
|𝜁 (𝑠)𝑀 (𝑠) |2d𝑡 ≪ 𝑈

(
log𝑇
log 𝑋

)
≪ 𝑈,

which implies ∫ 2

1
2

[𝑁 (𝑢, 𝑇 +𝑈) − 𝑁 (𝑢, 𝑇)]d𝑢 ≪ 𝑈,

so

𝑁 (𝜎,𝑇) ≤ 1
𝜎 − 1

2

∫ 2

1
2

𝑁 (𝑢, 𝑇)d𝑢 ≪ 𝑇

𝜎 − 1
2
.
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Selberg’s optimization

Conclusion

If Ψ(𝑥) → +∞, then we see that under 𝜎 = 1
2 + Ψ(𝑇 )

log𝑇 , one has

𝑁 (𝜎,𝑇) ≪ 𝑇 log𝑇
Ψ(𝑇) = 𝑜(𝑇 log𝑇) = 𝑜(𝑁 (𝑇)),

so

Theorem (Selberg, 1942)
Almost all nontrivial zeros 𝜌 = 𝛽 + 𝑖𝛾 satsify����𝛽 − 1

2

���� < Ψ( |𝛾 |)
log |𝛾 | .
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Selberg’s optimization

Moral of Selberg’s optimization

Selberg’s optimal choice of 𝜆𝑛 satisfies

𝜆𝑛 ∼ 𝜇(𝑛) log 𝑋/𝑛
log 𝑋

= 𝜇(𝑛)
(
1 − log 𝑛

log 𝑋

)
,

which suggests that when making Dirichlet polynomial approximations, it is
better to attach a weight: ∑

𝑛≤𝑋

𝛼𝑛

𝑛𝑠

(
1 − log 𝑛

log 𝑋

)
.
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Basic zero detecting device

By elementary real analysis, we know that

Proposition
Let 𝑓 be continuous and real-valued on [𝑎, 𝑏]. If����∫ 𝑏

𝑎
𝑓 (𝑡)d𝑡

���� < ∫ 𝑏

𝑎
| 𝑓 (𝑡) |d𝑡,

then 𝑓 must have a sign change in (𝑎, 𝑏).

Task: Find 𝑓 (𝑡) whose real zeros coincide with those of 𝜁 ( 1
2 + 𝑖𝑡).
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Hardy’s 𝑍-function

Recall from the functional equation that

𝜒(𝑠) = 𝜁 (𝑠)
𝜁 (1 − 𝑠) = 2𝑠𝜋𝑠−1 sin

𝜋𝑠

2
Γ(1 − 𝑠),

which has no zeros in 0 < 𝜎 < 1, so 𝜒 has a well defined square root.

Moreover, 𝜒(𝑠)𝜒(1 − 𝑠) = 1, so when 𝑠 = 1
2 + 𝑖𝑡,

𝑍 (𝑡) := 𝜒(𝑠)− 1
2 𝜁 (𝑠)

is a real-valued even function satisfying |𝑍 (𝑡) | = |𝜁 ( 1
2 + 𝑖𝑡) |.
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𝑁0 (𝑇 ) → ∞

𝑁0(𝑇) → +∞

Let
𝐼 =

∫ 𝑇+𝐻

𝑇
𝑍 (𝑡)d𝑡, 𝐽 =

∫ 𝑇+𝐻

𝑇
|𝑍 (𝑡) |d𝑡.

Then it suffices to show |𝐼 | < 𝐽 for all large 𝑇 .

By some intensive computations, we have

|𝐼 | ≪𝜀 𝑇
3
4+

𝜀
2 , 2 ≤ 𝐻 ≤ 𝑇.
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𝑁0 (𝑇 ) → ∞

Estimates for 𝐽

For 𝐽, one has

𝐽 =
∫ 𝑇+𝐻

𝑇
|𝜁 ( 1

2 + 𝑖𝑡) |d𝑡 ≥
�����∫ 1

2+𝑖 (𝑇+𝐻 )

1
2+𝑖𝑇

𝜁 (𝑠)d𝑠
����� .

By Cauchy’s integral theorem, we can move to 𝜎 = 2,∫ 1
2+𝑖 (𝑇+𝐻 )

1
2+𝑖𝑇

𝜁 (𝑠)d𝑠 = 𝑖

∫ 𝑇+𝐻

𝑇

∑
𝑛≥1

1
𝑛2+𝑖𝑡 d𝑡 +𝑂 𝜀 (𝑇

1
4+𝜀)

= 𝑖𝐻 +𝑂

(∑
𝑛≥2

1
𝑛2 log 𝑛

)
+𝑂 𝜀 (𝑇

1
4+𝜀),

so for 𝐻 ≫ 𝑇
1
4+𝜀 , this is ≫ 𝐻.
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𝑁0 (𝑇 ) → ∞

Conclusion

Setting 𝐻 = 𝑇
3
4+𝜀 , we see that

𝐽 ≫ 𝐻 = 𝑇
3
4+𝜀 > 𝑇

3
4+

𝜀
2 ≫ |𝐼 |.

Theorem (Hardy–Landau)

Let 𝜀 > 0. Then for all 𝑇 ≥ 𝑇0(𝜀), 𝑍 (𝑡) has a sign change in (𝑇,𝑇 + 𝑇
3
4+𝜀).

Exercise: Deduce that 𝑁0(𝑇) ≫ 𝑇
1
4 −𝜀 .
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Hardy–Littlewood zero detecting device

Instead of considering one interval, we look at multiple intervals together:

𝐼 (𝑡) =
∫ 𝑡+𝐻

𝑡
𝑓 (𝑢)d𝑢, 𝐽 (𝑡) =

∫ 𝑡+𝐻

𝑡
| 𝑓 (𝑢) |d𝑢,

where 𝑓 (𝑢) is related to 𝜁 ( 1
2 + 𝑖𝑢) and 𝑡 ≍ 𝑇 .

Key observation: If 𝑓 has no zeros in (𝑡0, 𝑡0 + 2𝐻), then |𝐼 (𝑡) | = 𝐽 (𝑡) in
(𝑡0, 𝑡0 + 𝐻).
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Hardy–Littlewood zero detecting device

Define
𝑆 = {𝑡 ∈ (𝑇, 2𝑇) : |𝐼 (𝑡) | = 𝐽 (𝑡)}

and a system of pairwise disjoint intervals:

𝑗𝑘 = (𝑇 + 2(𝑘 − 1)𝐻,𝑇 + 2𝑘𝐻), 1 ≤ 𝑘 ≤ 𝑚 = ⌊𝑇/2𝐻⌋ .

If 𝑓 does not change sign in 𝑗𝑘1 , 𝑗𝑘2 , . . . , 𝑗𝑘𝑟 , then

𝑟𝐻 ≤
𝑟∑

ℓ=1
𝜇( 𝑗𝑘ℓ ∩ 𝑆) ≤ 𝜇(𝑆) ⇒ 𝑟 ≤ 𝜇(𝑆)

𝐻
,

where 𝜇 is the Lebesgue measure on R, so

𝑁0(2𝑇) − 𝑁0(𝑇) ≥ 𝑚 − 𝑟 ≥ 𝑇

2𝐻
− 𝜇(𝑆)

𝐻
− 1.
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Problem setup

Since
𝑁0(2𝑇) − 𝑁0(𝑇) ≥ 𝑚 − 𝑟 ≥ 𝑇

2𝐻
− 𝜇(𝑆)

𝐻
− 1, (1)

it suffices to provide an upper bound for 𝜇(𝑆). Since∫
𝑆
𝐽 (𝑡)d𝑡 =

∫
𝑆
|𝐼 (𝑡) |d𝑡 ≤ 𝜇(𝑆) 1

2 ∥𝐼 ∥𝐿2 , (2)

so we need an upper bound for ∥𝐼 ∥𝐿2 and a lower bound for 𝐽 (𝑡).
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Upper bound for ∥𝐼 ∥𝐿2

We choose
𝑓 (𝑢) = 𝑍 (𝑢) = 𝜒( 1

2 + 𝑖𝑢)− 1
2 𝜁 ( 1

2 + 𝑖𝑢).

After some brute-force computations, one has ∥𝐼 ∥𝐿2 ≪ 𝐻
1
2𝑇

1
2 , so the

inequality (2) becomes

𝜇(𝑆) 1
2 𝐻

1
2𝑇

1
2 ≫

∫
𝑆
𝐽 (𝑡)d𝑡.
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Lower bound for 𝐽 (𝑡)

Since |𝑍 (𝑢) | = |𝜁 ( 1
2 + 𝑖𝑢) |, one has

𝐽 (𝑡) ≥
����∫ 𝑡+𝐻

𝑡
𝜁 ( 1

2 + 𝑖𝑢)d𝑢
���� .

Using the approximation 𝜁 ( 1
2 + 𝑖𝑢) = ∑

𝑛≤𝑇 𝑛−
1
2 −𝑖𝑢 +𝑂 (𝑇− 1

2 ), one has∫ 𝑡+𝐻

𝑡
𝜁 ( 1

2 + 𝑖𝑢)d𝑢 = 𝐻 − 𝑖𝐺 (𝑡) +𝑂 (𝐻𝑇− 1
2 ),

where
𝐺 (𝑡) =

∑
2≤𝑛≤𝑇

1 − 𝑛−𝑖𝐻

𝑛
1
2+𝑖𝑡 log 𝑛

.
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Lower bound for 𝐽 (𝑡)
Thus, we have

𝐽 (𝑡) > 𝐶1𝐻 − 𝐶2 |𝐺 (𝑡) |.

Integrating over 𝑆, we get

𝜇(𝑆) 1
2 𝐻

1
2𝑇

1
2 > 𝐶1𝜇(𝑆)𝐻 − 𝐶2

∫
𝑆
|𝐺 (𝑡) |d𝑡.

By Cauchy–Schwarz and Parseval, one has∫
𝑆
|𝐺 (𝑡) |d𝑡 ≪ 𝜇(𝑆) 1

2𝑇
1
2 ,

so 𝜇(𝑆)𝐻 ≪ 𝜇(𝑆) 1
2 𝐻

1
2𝑇

1
2 + 𝜇(𝑆) 1

2𝑇
1
2 , meaning for 𝐻 ≥ 1,

𝜇(𝑆) < 𝐶3𝑇𝐻
−1.
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Hardy–Littlewood lower bound 𝑁0 (𝑇 ) ≫ 𝑇

Conclusion

Plugging 𝜇(𝑆) < 𝐶3𝑇𝐻
−1 into the lower bound (1), we have

𝑁0(2𝑇) − 𝑁0(𝑇) >
𝑇

2𝐻
− 𝐶3𝑇

𝐻2 =
𝑇

𝐻

(
1
2
− 𝐶3

𝐻

)
,

which is ≫ 𝑇𝐻−1 provided that 𝐻 is large and fixed. Hence, we have

Theorem (Hardy–Littlewood, 1921)
As 𝑇 → +∞, 𝑁0(𝑇) ≫ 𝑇 .
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The Hardy–Littlewood framework

The proof method is summarized as follows

Let 𝐻 > 0 be an undetermined parameter.

Estimate 𝐼 (𝑡) =
∫ 𝑡+𝐻
𝑡

𝑓 (𝑢)d𝑢 and 𝐽 (𝑡) =
∫ 𝑡+𝐻
𝑡

| 𝑓 (𝑢) |d𝑢.

Bound the measure of 𝑆 = {𝑡 ∈ (𝑇, 2𝑇) : |𝐼 (𝑡) | = 𝐽 (𝑡)}.

Plugging the upper bound estimate for 𝜇(𝑆) into

𝑁0(2𝑇) − 𝑁0(𝑇) ≥
𝑇

2𝐻
− 𝜇(𝑆)

𝐻
− 1

and conclude.

Problem: HL’s choice of 𝑓 does not allow this argument to run when 𝐻 → 0.
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Selberg’s 𝑁0 (𝑇 ) ≫ 𝑇 log𝑇

Hardy–Littlewood framework with mollifiers

Selberg (1942) overcame the problem by attaching a mollifier:

𝑓 (𝑢) = 𝑍 (𝑢) |𝜙( 1
2 + 𝑖𝑢) |2,

where 𝜙(𝑠) is an approximation to {𝜁 (𝑠)}− 1
2 .

Slogan: It is easier to work with even powers of modulus.
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Selberg’s 𝑁0 (𝑇 ) ≫ 𝑇 log𝑇

Selberg’s choice of mollifier

Based on our experience with 𝑁 (𝜎,𝑇), the optimal 𝜙(𝑠) takes the form of

𝜙(𝑠) =
∑
𝑛≤𝑋

𝛼𝑛

𝑛𝑠

(
1 − log 𝑛

log 𝑋

)
,

where 𝛼𝑛 satisfies
∑

𝑛≥1 𝛼𝑛𝑛
−𝑠 = {𝜁 (𝑠)}− 1

2 .

This allows Selberg to obtain 𝜇(𝑆) < 𝐶4𝑇/
√
𝐻 log𝑇 , so

𝑁0(2𝑇) − 𝑁0(𝑇) >
𝑇

𝐻

(
1
2
− 𝐶4√

𝐻 log𝑇

)
,

which is ≫ 𝑇 log𝑇 provided that 𝐻 = 𝐴/log𝑇 and 𝐴 ≫ 1.
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Selberg’s 𝑁0 (𝑇 ) ≫ 𝑇 log𝑇

Remark on Selberg’s method

Before obtaining 𝑁0(𝑇) ≫ 𝑇 log𝑇 , Selberg also worked with partial Euler
product

𝜙(𝑠) =
∏
𝑝≤𝑋

(
1 − 1

2𝑝𝑠
− 1

8𝑝2𝑠

)
but only achieved 𝑁0(𝑇) ≫ 𝑇 log log log𝑇 .

Note: By binomial theorem,(
1 − 1

𝑝𝑠

) 1
2

= 1 − 1
2𝑝𝑠

− 1
8𝑝2𝑠 + . . .
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Selberg’s 𝑁0 (𝑇 ) ≫ 𝑇 log𝑇

Further works

Selberg (1942):

𝛼 = lim inf
𝑇→+∞

𝑁0(𝑇)
𝑁 (𝑇) > 0.

After Selberg, there are further developments on 𝛼:

S. H. Min闵嗣鹤 (1956): 𝛼 ≥ 1
60000 by tracking Selberg’s constants,

Levinson (1974): 𝛼 ≥ 0.342 using a very different method,

Conrey (1989): 𝛼 ≥ 0.4077 via Kloosterman sums, etc.;

Pratt–Robles–Zaharescu–Zeindler (2020): 𝛼 ≥ 0.416.
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