tre	od		ti	1

Inverse Galois Problem

Travor Liu, Ruiyang Tang, Siyu Liu

Department of Mathematics University College London

9 Dec 2024

IGP over Transcendental Extensions

Table of Contents

2 IGP for Abelian Groups and S_n over \mathbb{Q}

3 IGP over Finite Fields

J IGP over Transcendental Extensions

5 Bibliography

Introduction

The inverse Galois problem (IGP) asks whether every finite group occurs as the Galois group of some extension over a particular field.

Definition

Let *G* be a finite group and *K* be a field. *G* is said to be **realizable over** *K* if there exists some Galois extension L/K for which $G \cong \text{Gal}(L/K)$.

IGP over \mathbb{Q} is an open problem in general, and so we will discuss in details only a few special cases.

IGP over Transcendental Extensions

Table of Contents

Introduction

- 2 IGP for Abelian Groups and S_n over \mathbb{Q}
 - Cyclotomic Extensions
 - $\bullet\,$ IGP for Abelian Groups over $\mathbb Q$
 - IGP for S_n over \mathbb{Q}
- 3 IGP over Finite Fields
- 4 IGP over Transcendental Extensions

Bibliography

IGP over Transcendental Extensions

Cyclotomic Extensions

Cyclotomic Extensions

Definition

Let ζ_n be a primitive *n*-th root of unity. Then $\mathbb{Q}(\zeta_n)$ is the *n*-th **cyclotomic** extension of \mathbb{Q} .

Recall that ζ_n is a primitive *n*-th root of unity iff

$$\zeta_n = (e^{\frac{2\pi i}{n}})^j$$
 and $gcd(j,n) = 1$.

WLOG, let $\zeta_n = e^{\frac{2\pi i}{n}}$. Then:

Proposition

 $\mathbb{Q}(\zeta_n)/\mathbb{Q}$ is a Galois extension.

Proof: Notice that $\mathbb{Q}(\zeta_n)$ is the splitting field of $x^n - 1 = \prod_{j=1}^n (x - \zeta_n^j)$ over $\overline{\mathbb{Q}}$, so it is separable over \mathbb{Q} . \Box

Travor Liu, Ruiyang Tang, Siyu Liu

IGP over Transcendental Extensions

Bibliography O

Cyclotomic Extensions

Cyclotomic Polynomials

Definition

The *n*-th cyclotomic polynomial is

$$\Phi_n(x) = \prod_{\substack{1 \le j \le n \\ \gcd(j,n)=1}} (x - \zeta_n^j).$$

Proposition

For all $n \in \mathbb{N}$, $\Phi_n(x)$ is a monic polynomial in $\mathbb{Z}[x]$.

<u>*Proof*</u>: Observe that $x^n - 1 = \prod_{d|n} \Phi_d(x)$. By induction and Gauss's lemma, we obtain the desired result. \Box

IGP over Transcendental Extensions

Bibliography O

Cyclotomic Extensions

Preparation for Proof of the Irreducibility of Φ_n

Theorem (Fermat's Little Theorem)

If p is a prime and $a \in \mathbb{Z}$, then $a^p \equiv a \pmod{p}$.

Theorem (Freshman's dream)

Let *R* be a commutative ring with prime characteristic *p*. Then for all $a_1, \ldots, a_m \in R$, we have $\left(\sum_{i=1}^m a_i\right)^p = \sum_{i=1}^m a_i^p$.

<u>*Proof*</u>: When m = 2, we use the binomial theorem to expand $(a_1 + a_2)^p$, and we note that when $s \in \{1, ..., p - 1\}$, *p* divides the binomial coefficient $\binom{p}{s}$. The general case follows by induction. □

Cyclotomic Extensions

Preparation for Proof of the Irreducibility of Φ_n (Continued)

Theorem

For any polynomial $f(x) \in \mathbb{F}_p[x]$, we have $f(x^p) = [f(x)]^p$.

<u>*Proof*</u>: Let $f(x) = \sum_{i=0}^{m} a_i x^i$. Then

$$[f(x)]^{p} = \left[\sum_{i=0}^{m} a_{i} x^{i}\right]^{p} \stackrel{\text{(i)}}{=} \sum_{i=0}^{m} a_{i}^{p} x^{ip} \stackrel{\text{(ii)}}{=} \sum_{i=0}^{m} a_{i} x^{ip} = f(x^{p}),$$

where (i) is due to Freshman's dream, and in (ii) we use Fermat's little theorem to conclude that $a_i = a_i^p$ in $\mathbb{F}_p[x]$. \Box

IGP over Transcendental Extensions

Bibliography O

Cyclotomic Extensions

Sketch Proof of the Irreducibility of Φ_n

Theorem

 $\Phi_n(x)$ is irreducible over \mathbb{Q} and $[\mathbb{Q}(\zeta_n) : \mathbb{Q}] = \deg(\Phi_n(x)) = \varphi(n)$.

• Let $p \nmid n$ be a prime and $\Phi_n(x) = m(x)h(x)$, where $m(x) = m_{\zeta_n,\mathbb{Q}}(x)$. Then $\Phi_n(\zeta_n^p) = 0 \implies m(\zeta_n^p) = 0 \lor h(\zeta_n^p) = 0$.

2 Assume
$$h(\zeta_n^p) = 0$$
, so $m(x) \mid h(x^p)$.

- Schoose $m_1(x) | \overline{m}(x)$ irreducible over \mathbb{F}_p , so $m_1(x) | \overline{m}(x) \implies m_1(x) | \overline{h}(x^p) = [\overline{h}(x)]^p$. Since $\overline{\Phi}(x) = \overline{m}(x)\overline{h}(x)$, $[m_1(x)]^2 | \overline{\Phi}(x)$ thus $x^n - 1$ is not separable.
- Note $\frac{d}{dx}(x^n 1) = nx^{n-1} \neq 0$, the separability of $x^n 1$ in $\mathbb{F}_p[x]$ is ensured, therefore contradiction reached. We conclude that $m(\zeta_n^p) = 0 \implies m(\zeta_n^j) = 0 \forall j$ coprime to *n*.
- So Therefore $\Phi_n(x) \mid m(x)$, and by assumption $m(x) \mid \Phi_n(x), m(x) = \Phi_n(x)$. So $\Phi_n(x)$ is the minimal polynimal of ζ_n . □

IGP over Transcendental Extensions

Bibliography O

Cyclotomic Extensions

Galois Group of Cyclotomic Extensions

Proposition

 $\operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \cong (\mathbb{Z}/n\mathbb{Z})^*.$

Proof: Since each $\sigma \in \text{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q})$ permutes the roots of $\Phi_n(x)$,

$$\sigma(\zeta_n) = \zeta_n^j, \quad \gcd(j, n) = 1.$$

Define the map $f : \operatorname{Gal}(\mathbb{Q}(\zeta_n)/\mathbb{Q}) \to (\mathbb{Z}/n\mathbb{Z})^*$ by

$$f:(\sigma:\zeta_n\mapsto\zeta_n^j)\mapsto j,$$

which is an isomorphism. \Box

伺き くきき くきき

IGP over Transcendental Extensions

Bibliography O

Cyclotomic Extensions

IGP for Cyclic Groups over \mathbb{Q}

Let $n \in \mathbb{N}$. We want to find $\mathbb{Q} \subseteq L \subseteq \mathbb{C}$ such that $\operatorname{Gal}(L/\mathbb{Q}) \cong C_n$.

• If n + 1 is a prime p, $(\mathbb{Z}/p\mathbb{Z})^* \cong C_{p-1} = C_n$. Let $\zeta_p = e^{\frac{2\pi i}{p}}$,

$$\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \cong (\mathbb{Z}/p\mathbb{Z})^*.$$

2 If n + 1 is not a prime, we need:

Theorem (Dirichlet's theorem on arithmetic progressions)

Let $a, m \in \mathbb{Z}$ be coprime. Then \exists infinitely many primes $\equiv a \pmod{m}$.

See proof in MATH0083; it uses analytic number theory.

IGP over Transcendental Extensions

Bibliography O

Cyclotomic Extensions

IGP for Cyclic Groups over \mathbb{Q} (Continued)

Therefore, for any *n*, choose a prime *p* with $p \equiv 1 \pmod{n}$.

Proposition

If
$$n | p - 1$$
, then $C_n \leq C_{p-1}$ and $C_n \cong C_{p-1}/C_{(p-1)/n}$.

By the fundamental theorem of Galois theory, there exists $\mathbb{Q} \subseteq L \subseteq \mathbb{Q}(\zeta_p)$ fixed by $C_{(p-1)/n}$, so

$$\operatorname{Gal}(L/\mathbb{Q}) \cong \frac{\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})}{\operatorname{Gal}(\mathbb{Q}(\zeta_p)/L)} \cong \frac{C_{p-1}}{C_{(p-1)/n}} \cong C_n.\square$$

Thus, the IGP over \mathbb{Q} is solved in the cyclic case.

IGP over Transcendental Extensions

Bibliography O

IGP for Abelian Groups over \mathbb{Q}

Lemma A for IGP for Abelian Groups over \mathbb{Q}

Lemma (A)

Every finite Abelian group M is a direct product of cyclic groups. That is, there exist $q_1, \ldots, q_m \in \mathbb{N}$ such that $M \cong \prod_{i=1}^m C_{q_i}$.

<u>*Proof*</u>: This is an immediate corollary of the fundamental theorem of finitely generated modules over PIDs. \Box

IGP for Abelian Groups over Q

Lemma B for IGP for Abelian Groups over \mathbb{Q}

Lemma (B)

Let $n_1, \ldots, n_k \in \mathbb{N}$ be pairwise coprime; then we have $(\mathbb{Z}/n_1 \ldots n_k \mathbb{Z})^* \cong \prod_{i=1}^k (\mathbb{Z}/n_i \mathbb{Z})^*.$

Proof: 1) The CRT gives a natural isomorphism $\mathbb{Z}/n_1 \dots n_k \mathbb{Z} \cong \prod_{i=1}^k \mathbb{Z}/n_i \mathbb{Z}$.

2)
$$\left(\prod_{i=1}^{k} R_{i}\right)^{*} = \prod_{i=1}^{k} R_{i}^{*}$$
 holds for any rings R_{1}, \ldots, R_{k} .

Theorem (Chinese remainder theorem)

Let $n_1, \ldots, n_k \in \mathbb{N}$ be pairwise coprime. Then the system of congruences

$$x \equiv a_i \pmod{n_i}, \quad i = 1, \dots, k$$

has a unique solution modulo $n_1 \cdots n_k$.

< ∃ >

< 17 ▶

IGP over Transcendental Extensions

Bibliography O

IGP for Abelian Groups over Q

IGP for Abelian Groups over ${\mathbb Q}$ - Proof

Let $M = \prod_{i=1}^{m} C_{q_i}$. It suffices to show that *M* is a quotient of some $(\mathbb{Z}/n\mathbb{Z})^*$.

By Dirichlet's theorem on arithmetic progressions, there exist distinct primes p_1, \ldots, p_m such that $p_j \equiv 1 \pmod{q_j}$ for all $j \in \{1, \ldots, m\}$.

It follows that C_{q_j} is a quotient of $(\mathbb{Z}/p_j\mathbb{Z})^*$ for all $j \in \{1, \ldots, m\}$. So we can define the quotient epimorphisms $\kappa_j : (\mathbb{Z}/p_j\mathbb{Z})^* \to C_{q_j}$.

4 日 2 4 間 2 4 三 2 4 三 2 4 二

IGP over Transcendental Extensions

Bibliography O

IGP for Abelian Groups over Q

IGP for Abelian Groups over \mathbb{Q} - Proof (Continued)

Set $n = p_1 \dots p_m$ and let $\pi_j : (\mathbb{Z}/n\mathbb{Z})^* \to (\mathbb{Z}/p_j\mathbb{Z})^*$ be natural projections (see Lemma B). These are also epimorphisms.

Define

$$f \coloneqq (\kappa_1 \circ \pi_1, \ldots, \kappa_m \circ \pi_m) : (\mathbb{Z}/n\mathbb{Z})^* \to \prod_{i=1}^m C_{q_i},$$

which composes and glues the individual epimorphisms. f is also an epimorphism, so $M \cong \prod_{i=1}^{m} C_{q_i} \cong (\mathbb{Z}/n\mathbb{Z})^*/\ker(f)$. \Box

The IGP over ${\mathbb Q}$ is thus solved in the Abelian case.

IGP over Transcendental Extensions

Bibliography O

IGP for S_n over \mathbb{Q}

Recognition Criterion for S_n

Since a field automorphism permutes the roots of polynomials, we may view each Galois group as a subgroup of some S_n .

We establish a sufficient condition for $G \leq S_n$ to be S_n .

Definition

Let G act on X. Then the action is **transitive** if

$$\forall a, b \in X, \quad \exists g \in G \quad g \cdot a = b.$$

Theorem (Recognition criterion for S_n)

Let G be a transitive subgroup of S_n containing a transposition and an (n-1)-cycle. Then $G = S_n$.

IGP over Transcendental Extensions

Bibliography O

IGP for S_n over \mathbb{Q}

Proof of the Recognition Criterion

Theorem (Recognition criterion for S_n)

Let G be a transitive subgroup of S_n containing a transposition and an (n-1)-cycle. Then $G = S_n$.

WLOG assume $\sigma = (2 \ 3 \ \dots \ n-1), \tau = (u \ v) \in G$. Choose $\theta \in G$ s.t. $\theta(u) = 1$. Let $k = \theta(v)$. Then $k \ge 2$ and

$$\eta := \theta \tau \theta^{-1} = (1 \ k) \in G.$$

By conjugating η with σ , we have

$$\forall 2 \le r \le n, \quad (1 \ r) \in G.$$

Since $(1 r)(1 s)(1 r)^{-1} = (r s)$, G contains every transposition, so $G = S_n$. \Box

IGP over Transcendental Extensions

IGP for S_n over \mathbb{Q}

IGP for S_n over \mathbb{Q} – Plan

Theorem (Recognition criterion for S_n)

Let G be a transitive subgroup of S_n containing a transposition and an (n-1)-cycle. Then $G = S_n$.

By the properties of Galois group, we know that

Theorem (Irreducibility criterion)

Let L/K be a Galois extension with Galois group G. Then $f(x) \in K[x]$ is irreducible if and only if G is transitive on the roots of f.

Task: Find an irreducible polynomial $f(x) \in \mathbb{Q}[x]$ of degree *n* whose Galois group *G* contains a transposition and an (n - 1)-cycle.

э

IGP over Transcendental Extensions

Bibliography O

IGP for S_n over \mathbb{Q}

Reduction Modulo p

Theorem (mod p test for irreducibility)

Let $f(x) = a_n x^n + \dots + a_0 \in \mathbb{Z}[x]$ and $p \nmid a_n$ be a prime. If the mod p reduction $\overline{f}(x)$ is irreducible over \mathbb{F}_p , then f(x) is irreducible over \mathbb{Q} .

We also quote a result from algebraic number theory:

Theorem (Dedekind)

If $f(x) \in \mathbb{Z}[x]$ is monic and $\overline{f} = g_1g_2 \cdots g_k$ for distinct irreducibles g_1, \ldots, g_k of degree n_1, \ldots, n_k in $\mathbb{F}_p[x]$, then $\operatorname{Gal}(f/\mathbb{Q})$ contains an (n_1, n_2, \ldots, n_k) -cycle.

See Keith Conrad's article [1] for details.

< ロ > < 同 > < 回 > < 回 > .

Now, let $f(x) \in \mathbb{Z}[x]$ be monic and $G = \text{Gal}(f/\mathbb{Q})$.

Choose irreducible $f_1(x) \in \mathbb{F}_2[x]$ of degree *n*. By Dedekind's theorem,

 $f \equiv f_1 \pmod{2} \implies G$ transitive.

Let $f_2 = g_1g_2 \in \mathbb{F}_3[x]$ for irreducible quadratic $g_1(x) \in \mathbb{F}_3[x]$ and $g_2(x) \in \mathbb{F}_3[x]$ of degree n - 2 s.t.

$$g_2(x) = \begin{cases} h(x) & n \text{ odd} \\ xh(x) & n \text{ even} \end{cases}$$

for some irreducible $h(x) \in \mathbb{F}_3[x]$ of odd degree. If $f \equiv f_2 \pmod{3}$, then *G* contains some (2, k)-cycle σ for some odd *k*, so σ^k is a transposition.

◆□> ◆◎> ◆ヨ> ◆ヨ> 三日

IGP over Transcendental Extensions

Bibliography O

IGP for S_n over \mathbb{Q}

IGP for S_n over \mathbb{Q} – Proof (Continued)

Now, we have

$$f \equiv f_1 \pmod{2} \implies G \text{ transitive,}$$
(1)

 $f \equiv f_2 \pmod{3} \implies G$ contains a transposition. (2)

Let $f_3(x) = xg_3(x) \in \mathbb{F}_5[x]$ for some irreducible $g_3(x) \in \mathbb{F}_5[x]$ of degree n - 1, so

$$f \equiv f_3 \pmod{5} \implies G \text{ contains an } (n-1)\text{-cycle.}$$
 (3)

By the CRT, there exists a monic $f(x) \in \mathbb{Z}[x]$ satisfying the conditions (1), (2), and (3), so $G = S_n$. \Box

э

IGP over Transcendental Extensions

Bibliography O

Table of Contents

2 IGP for Abelian Groups and S_n over \mathbb{Q}

3 IGP over Finite Fields

IGP over Transcendental Extensions

Bibliography

Properties of Finite Fields

In contrast to the case over \mathbb{Q} , not every finite group is realizable over any given finite field. We start with some preliminary facts:

Proposition

- Every finite field is of order $q = p^n$ for some prime p and some $n \in \mathbb{N}$.
- ② Conversely, for all prime p and all $n \in \mathbb{N}$, there exists a field of order $q = p^n$, unique up to isomorphism (we denote this field by \mathbb{F}_a).
- So \mathbb{F}_q precisely contains all the roots of the polynomial $x^q x \in \mathbb{F}_p[x]$.

Proof: 1) Consider the following obvious facts.

- i. For all prime p, there is exactly one field of order \mathbb{F}_p , up to isomorphism.
- ii. Every finite field *F* has characteristic *p* for some prime *p*, \mathbb{F}_p is a subfield of *F*, and F/\mathbb{F}_p is a finite extension. \Box

イロト (得) (ヨ) (ヨ)

IGP over Transcendental Extensions

Bibliography O

Properties of Finite Fields (Continued)

Proof: (Continued)

2) & 3) Let $q = p^n$ and $f(x) = x^q - x \in \mathbb{F}_p[x]$. Let *L* be a splitting field of f(x) over \mathbb{F}_p . It can be proven that the *q* roots of f(x) in *L* form a subfield of *L*. This proves the existence part of 2).

Let *F* be a field of order *q*. It can be shown that all its elements are roots of $x^q - x$, so $x^q - x \in \mathbb{F}_p[x]$ splits in *F*. There cannot be a smaller field in which it splits, so *F* is a splitting field of $x^q - x$. Recalling that all splitting fields of a polynomial are isomorphic, the uniqueness part of 2) is proven. \Box

イロト (得) (ヨ) (ヨ)

IGP over Transcendental Extensions

IGP over Finite Fields - Proof

Theorem

A finite group is realizable over any given finite field if and only if it is cyclic.

<u>Proof</u>: Let $q = p^n$ for some prime p, and consider a finite extension L/\mathbb{F}_q of degree $m \in \mathbb{N}$. Of course $L \cong \mathbb{F}_{q^m}$ as extensions of \mathbb{F}_q . Consider the function (called **Frobenius endomorphism**)

$$\sigma: \mathbb{F}_{q^m} \to \mathbb{F}_{q^m}, \ x \mapsto x^q.$$

This is an automorphism of \mathbb{F}_{q^m} partly due to the theorem below:

Theorem (Freshman's dream, general version)

Let *R* be commutative ring with prime characteristic *p*; then for all $a, b \in R$ and all $n \in \mathbb{N}$, we have $(a + b)^{p^n} = a^{p^n} + b^{p^n}$.

Travor Liu, Ruiyang Tang, Siyu Liu

イロト イポト イヨト イヨト

IGP over Finite Fields - Proof (Continued)

Proof: (Continued)

 $\mathbb{F}_{q^m}/\mathbb{F}_q$ is Galois as it is a splitting field of $x^{q^m} - x$ over \mathbb{F}_q .

We show that $\sigma \in \text{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$. Since the unit group \mathbb{F}_q^* of \mathbb{F}_q is cyclic, $\mathbb{F}_q^* = \langle \alpha \rangle$, and every non-zero element of \mathbb{F}_q is a power of α . As α is also a root of $x^q - x$, σ fixes α .

Now, we show that $\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$ is cyclic. Write $\mathbb{F}_{q^m}^* = \langle \beta \rangle$. Clearly, $\mathbb{F}_{q^m} = \mathbb{F}_q(\beta)$, so σ^k fixes \mathbb{F}_{q^m} iff $\sigma^k(\beta) = \beta$, which happens iff $m \mid k$, so

$$\operatorname{ord}(\sigma) = m = |\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)| = [\mathbb{F}_{q^m} : \mathbb{F}_q],$$

which means that $\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q) = \langle \sigma \rangle \cong C_m. \square$

The discussion of the IGP over any finite field is therefore complete.

IGP over Transcendental Extensions

Bibliography O

Table of Contents

1 Introduction

2 IGP for Abelian Groups and S_n over \mathbb{Q}

IGP over Finite Fields

- 4 IGP over Transcendental Extensions
 - IGP over $\mathbb{C}(t)$
 - IGP over $\mathbb{Q}(t_1, t_2, \ldots, t_n)$

Bibliography

IGP over Transcendental Extensions $\circ \circ \circ \circ$

Bibliography O

Transcendental Extensions

Let L/K be some field extension. Recall that

Definition

An element $\alpha \in L$ is **algebraic** over *K* if $\exists f(x) \in K[x]$ for which $f(\alpha) = 0$.

We introduce the opposite notion:

Definition

An element $\alpha \in L$ is **transcendental** over *K* if it is not algebraic. L/K is transcendental if *L* contains a transcendental element.

e.g. e, π over \mathbb{Q} are transcendental. $\mathbb{Q}(\pi)/\mathbb{Q}$ and K(t)/K are transcendental.

伺 ト イヨ ト イヨ ト

IGP is completely resolved for the case $K = \mathbb{C}(t)$, the complex function field.

Tools: complex analysis, Riemann surfaces, covering maps

Theorem (Riemann's existence theorem, analytic version)

Let S be a compact Riemann surface. For any distinct points $a_1, a_2, \ldots, a_n \in S$ and $c_1, c_2, \ldots, c_n \in \mathbb{C}$, there exists a meromorphic function $f : S \to \mathbb{C}$ such that $f(a_j) = c_j$ for $j = 1, 2, \ldots, n$.

RET establishes a connection between finite extensions over $\mathbb{C}(t)$ and compact Riemann surfaces. See §5-6 of Volklein [4] for details.

イロト イ理ト イヨト イヨト

We can relate IGP over the *n*-variable function field $\mathbb{Q}(t_1, t_2, \ldots, t_n)$ and IGP over \mathbb{O} via a result of Hilbert:

Theorem (Hilbert's irreducibility theorem)

Let $f(t_1,\ldots,t_n,x_1,\ldots,x_m) \in \mathbb{Q}(t_1,\ldots,t_n)[x]$ be irreducible. Then \exists infinitely many $q_1, q_2, \ldots, q_n \in \mathbb{Q}$ s.t. the specialized polynomial $f(q_1, \ldots, q_n, x_1, \ldots, x_m) \in \mathbb{Q}[x_1, \ldots, x_m]$ is irreducible.

Corollary

If G is realizable over $\mathbb{Q}(t_1, \ldots, t_n)$, then G is realizable over \mathbb{Q} .

See §1 of Volklein [4]. This means one can realize every S_n by considering the Galois extension of a general polynomial.

IGP over Transcendental Extensions

Bibliography

Keith Conrad.

Galois Groups over Q and Factorizations mod *p*. https://kconrad.math.uconn.edu/blurbs/gradnumthy/ galois-Q-factor-mod-p.pdf

David S. Dummit and Richard M. Foote (2004). *Abstract Algebra (3rd ed.).*

John Wiley & Sons, Inc.

Fariba Ranjbar and Saeed Ranjbar (1979). Inverse Galois Problem and Significant Methods. *arXiv: 1512.08708*

Helmut Voklein (1996).

Groups as Galois Groups: An Introduction. Cambridge University Press.