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Introduction

The inverse Galois problem (IGP) asks whether every finite group occurs as
the Galois group of some extension over a particular field.

Definition
Let 𝐺 be a finite group and 𝐾 be a field. 𝐺 is said to be realizable over 𝐾 if
there exists some Galois extension 𝐿/𝐾 for which 𝐺 � Gal(𝐿/𝐾).

IGP over Q is an open problem in general, and so we will discuss in details
only a few special cases.
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Cyclotomic Extensions

Cyclotomic Extensions
Definition
Let 𝜁𝑛 be a primitive 𝑛-th root of unity. Then Q(𝜁𝑛) is the 𝑛-th cyclotomic
extension of Q.

Recall that 𝜁𝑛 is a primitive 𝑛-th root of unity iff

𝜁𝑛 = (𝑒 2𝜋𝑖
𝑛 ) 𝑗 and gcd( 𝑗 , 𝑛) = 1.

WLOG, let 𝜁𝑛 = 𝑒
2𝜋𝑖
𝑛 . Then:

Proposition
Q(𝜁𝑛)/Q is a Galois extension.

Proof : Notice that Q(𝜁𝑛) is the splitting field of 𝑥𝑛 − 1 =
∏𝑛

𝑗=1(𝑥 − 𝜁
𝑗
𝑛) over

Q, so it is separable over Q. □
Travor Liu, Ruiyang Tang, Siyu Liu Inverse Galois Problem 9 Dec 2024 5 / 32
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Cyclotomic Extensions

Cyclotomic Polynomials

Definition
The 𝑛-th cyclotomic polynomial is

Φ𝑛 (𝑥) =
∏

1≤ 𝑗≤𝑛
gcd( 𝑗 ,𝑛)=1

(𝑥 − 𝜁 𝑗
𝑛).

Proposition
For all 𝑛 ∈ N, Φ𝑛 (𝑥) is a monic polynomial in Z[𝑥].

Proof : Observe that 𝑥𝑛 − 1 =
∏

𝑑 |𝑛 Φ𝑑 (𝑥). By induction and Gauss’s lemma,
we obtain the desired result. □
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Cyclotomic Extensions

Preparation for Proof of the Irreducibility of Φ𝑛

Theorem (Fermat’s Little Theorem)
If 𝑝 is a prime and 𝑎 ∈ Z, then 𝑎𝑝 ≡ 𝑎 (mod 𝑝).

Theorem (Freshman’s dream)
Let 𝑅 be a commutative ring with prime characteristic 𝑝. Then for all
𝑎1, . . . , 𝑎𝑚 ∈ 𝑅, we have

(∑𝑚
𝑖=1 𝑎𝑖

) 𝑝
=
∑𝑚

𝑖=1 𝑎
𝑝

𝑖
.

Proof : When 𝑚 = 2, we use the binomial theorem to expand (𝑎1 + 𝑎2) 𝑝, and
we note that when 𝑠 ∈ {1, . . . , 𝑝 − 1}, 𝑝 divides the binomial coefficient

(𝑝
𝑠

)
.

The general case follows by induction. □
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Cyclotomic Extensions

Preparation for Proof of the Irreducibility of Φ𝑛 (Continued)

Theorem
For any polynomial 𝑓 (𝑥) ∈ F𝑝 [𝑥], we have 𝑓 (𝑥𝑝) = [ 𝑓 (𝑥)] 𝑝.

Proof : Let 𝑓 (𝑥) = ∑𝑚
𝑖=0 𝑎𝑖𝑥

𝑖 . Then

[ 𝑓 (𝑥)] 𝑝 =

[
𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖

] 𝑝
(i)
=

𝑚∑︁
𝑖=0

𝑎
𝑝

𝑖
𝑥𝑖 𝑝

(ii)
=

𝑚∑︁
𝑖=0

𝑎𝑖𝑥
𝑖 𝑝 = 𝑓 (𝑥𝑝),

where (i) is due to Freshman’s dream, and in (ii) we use Fermat’s little
theorem to conclude that 𝑎𝑖 = 𝑎𝑝𝑖 in F𝑝 [𝑥]. □
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Cyclotomic Extensions

Sketch Proof of the Irreducibility of Φ𝑛

Theorem
Φ𝑛 (𝑥) is irreducible over Q and [Q(𝜁𝑛) : Q] = deg(Φ𝑛 (𝑥)) = 𝜑(𝑛).

1 Let 𝑝 ∤ 𝑛 be a prime and Φ𝑛 (𝑥) = 𝑚(𝑥)ℎ(𝑥), where 𝑚(𝑥) = 𝑚𝜁𝑛 ,Q (𝑥). Then
Φ𝑛 (𝜁 𝑝𝑛 ) = 0 =⇒ 𝑚(𝜁 𝑝𝑛 ) = 0 ∨ ℎ(𝜁 𝑝𝑛 ) = 0.

2 Assume ℎ(𝜁 𝑝𝑛 ) = 0, so 𝑚(𝑥) | ℎ(𝑥𝑝).

3 Choose 𝑚1 (𝑥) | 𝑚(𝑥) irreducible over F𝑝 , so
𝑚1 (𝑥) | 𝑚(𝑥) =⇒ 𝑚1 (𝑥) | ℎ(𝑥𝑝) = [ℎ(𝑥)] 𝑝 . Since Φ(𝑥) = 𝑚(𝑥)ℎ(𝑥),
[𝑚1 (𝑥)]2 | Φ(𝑥) thus 𝑥𝑛 − 1 is not separable.

4 Note d
d𝑥 (𝑥

𝑛 − 1) = 𝑛𝑥𝑛−1 ≠ 0, the separability of 𝑥𝑛 − 1 in F𝑝 [𝑥] is ensured, therefore
contradiction reached. We conclude that 𝑚(𝜁 𝑝𝑛 ) = 0 =⇒ 𝑚(𝜁 𝑗𝑛) = 0∀ 𝑗 coprime to 𝑛.

5 Therefore Φ𝑛 (𝑥) | 𝑚(𝑥) , and by assumption 𝑚(𝑥) | Φ𝑛 (𝑥), 𝑚(𝑥) = Φ𝑛 (𝑥). So Φ𝑛 (𝑥) is
the minimal polynimal of 𝜁𝑛. □
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Cyclotomic Extensions

Galois Group of Cyclotomic Extensions

Proposition
Gal(Q(𝜁𝑛)/Q) � (Z/𝑛Z)∗.

Proof : Since each 𝜎 ∈ Gal(Q(𝜁𝑛)/Q) permutes the roots of Φ𝑛 (𝑥),

𝜎(𝜁𝑛) = 𝜁 𝑗
𝑛 , gcd( 𝑗 , 𝑛) = 1.

Define the map 𝑓 : Gal(Q(𝜁𝑛)/Q) → (Z/𝑛Z)∗ by

𝑓 : (𝜎 : 𝜁𝑛 ↦→ 𝜁
𝑗
𝑛) ↦→ 𝑗 ,

which is an isomorphism. □

Travor Liu, Ruiyang Tang, Siyu Liu Inverse Galois Problem 9 Dec 2024 10 / 32



Introduction IGP for Abelian Groups and 𝑆𝑛 over Q IGP over Finite Fields IGP over Transcendental Extensions Bibliography

Cyclotomic Extensions

IGP for Cyclic Groups over Q

Let 𝑛 ∈ N. We want to find Q ⊆ 𝐿 ⊆ C such that Gal(𝐿/Q) � 𝐶𝑛.

1 If 𝑛 + 1 is a prime 𝑝, (Z/𝑝Z)∗ � 𝐶𝑝−1 = 𝐶𝑛. Let 𝜁𝑝 = 𝑒
2𝜋𝑖
𝑝 ,

Gal(Q(𝜁𝑝)/Q) � (Z/𝑝Z)∗.

2 If 𝑛 + 1 is not a prime, we need:

Theorem (Dirichlet’s theorem on arithmetic progressions)
Let 𝑎, 𝑚 ∈ Z be coprime. Then ∃ infinitely many primes ≡ 𝑎 (mod 𝑚).

See proof in MATH0083; it uses analytic number theory.
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Cyclotomic Extensions

IGP for Cyclic Groups over Q (Continued)

Therefore, for any 𝑛, choose a prime 𝑝 with 𝑝 ≡ 1 (mod 𝑛).

Proposition
If 𝑛 | 𝑝 − 1, then 𝐶𝑛 ≤ 𝐶𝑝−1 and 𝐶𝑛 � 𝐶𝑝−1/𝐶(𝑝−1)/𝑛.

By the fundamental theorem of Galois theory, there exists Q ⊆ 𝐿 ⊆ Q(𝜁𝑝)
fixed by 𝐶(𝑝−1)/𝑛, so

Gal(𝐿/Q) �
Gal(Q(𝜁𝑝)/Q)
Gal(Q(𝜁𝑝)/𝐿)

�
𝐶𝑝–1

𝐶(𝑝−1)/𝑛
� 𝐶𝑛.□

Thus, the IGP over Q is solved in the cyclic case.
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IGP for Abelian Groups over Q

Lemma A for IGP for Abelian Groups over Q

Lemma (A)
Every finite Abelian group 𝑀 is a direct product of cyclic groups. That is,
there exist 𝑞1, . . . , 𝑞𝑚 ∈ N such that 𝑀 �

∏𝑚
𝑖=1𝐶𝑞𝑖 .

Proof : This is an immediate corollary of the fundamental theorem of finitely
generated modules over PIDs. □
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IGP for Abelian Groups over Q

Lemma B for IGP for Abelian Groups over Q

Lemma (B)
Let 𝑛1, . . . , 𝑛𝑘 ∈ N be pairwise coprime; then we have
(Z/𝑛1 . . . 𝑛𝑘Z)∗ �

∏𝑘
𝑖=1(Z/𝑛𝑖Z)∗.

Proof : 1) The CRT gives a natural isomorphism Z/𝑛1 . . . 𝑛𝑘Z �
∏𝑘

𝑖=1 Z/𝑛𝑖Z.

2)
(∏𝑘

𝑖=1 𝑅𝑖

)∗
=
∏𝑘

𝑖=1 𝑅
∗
𝑖

holds for any rings 𝑅1, . . . , 𝑅𝑘 . □

Theorem (Chinese remainder theorem)
Let 𝑛1, . . . , 𝑛𝑘 ∈ N be pairwise coprime. Then the system of congruences

𝑥 ≡ 𝑎𝑖 (mod 𝑛𝑖), 𝑖 = 1, . . . , 𝑘

has a unique solution modulo 𝑛1 · · · 𝑛𝑘 .
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IGP for Abelian Groups over Q

IGP for Abelian Groups over Q - Proof

Let 𝑀 =
∏𝑚

𝑖=1𝐶𝑞𝑖 . It suffices to show that 𝑀 is a quotient of some (Z/𝑛Z)∗.

By Dirichlet’s theorem on arithmetic progressions, there exist distinct primes
𝑝1, . . . , 𝑝𝑚 such that 𝑝 𝑗 ≡ 1 (mod 𝑞 𝑗) for all 𝑗 ∈ {1, . . . , 𝑚}.

It follows that 𝐶𝑞 𝑗
is a quotient of (Z/𝑝 𝑗Z)∗ for all 𝑗 ∈ {1, . . . , 𝑚}. So we can

define the quotient epimorphisms 𝜅 𝑗 : (Z/𝑝 𝑗Z)∗ → 𝐶𝑞 𝑗
.
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IGP for Abelian Groups over Q

IGP for Abelian Groups over Q - Proof (Continued)

Set 𝑛 = 𝑝1 . . . 𝑝𝑚 and let 𝜋 𝑗 : (Z/𝑛Z)∗ → (Z/𝑝 𝑗Z)∗ be natural projections
(see Lemma B). These are also epimorphisms.

Define

𝑓 := (𝜅1 ◦ 𝜋1, . . . , 𝜅𝑚 ◦ 𝜋𝑚) : (Z/𝑛Z)∗ →
𝑚∏
𝑖=1

𝐶𝑞𝑖 ,

which composes and glues the individual epimorphisms. 𝑓 is also an
epimorphism, so 𝑀 �

∏𝑚
𝑖=1𝐶𝑞𝑖 � (Z/𝑛Z)∗/ker( 𝑓 ). □

The IGP over Q is thus solved in the Abelian case.
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IGP for 𝑆𝑛 over Q

Recognition Criterion for 𝑆𝑛

Since a field automorphism permutes the roots of polynomials, we may view
each Galois group as a subgroup of some 𝑆𝑛.

We establish a sufficient condition for 𝐺 ≤ 𝑆𝑛 to be 𝑆𝑛.

Definition
Let 𝐺 act on 𝑋 . Then the action is transitive if

∀𝑎, 𝑏 ∈ 𝑋, ∃𝑔 ∈ 𝐺 𝑔 · 𝑎 = 𝑏.

Theorem (Recognition criterion for 𝑆𝑛)
Let 𝐺 be a transitive subgroup of 𝑆𝑛 containing a transposition and an
(𝑛 − 1)-cycle. Then 𝐺 = 𝑆𝑛.
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IGP for 𝑆𝑛 over Q

Proof of the Recognition Criterion

Theorem (Recognition criterion for 𝑆𝑛)
Let 𝐺 be a transitive subgroup of 𝑆𝑛 containing a transposition and an
(𝑛 − 1)-cycle. Then 𝐺 = 𝑆𝑛.

WLOG assume 𝜎 = (2 3 . . . 𝑛 − 1), 𝜏 = (𝑢 𝑣) ∈ 𝐺. Choose 𝜃 ∈ 𝐺 s.t.
𝜃 (𝑢) = 1. Let 𝑘 = 𝜃 (𝑣). Then 𝑘 ≥ 2 and

𝜂 := 𝜃𝜏𝜃−1 = (1 𝑘) ∈ 𝐺.

By conjugating 𝜂 with 𝜎, we have

∀2 ≤ 𝑟 ≤ 𝑛, (1 𝑟) ∈ 𝐺.

Since (1 𝑟) (1 𝑠) (1 𝑟)−1 = (𝑟 𝑠), 𝐺 contains every transposition, so 𝐺 = 𝑆𝑛. □
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IGP for 𝑆𝑛 over Q

IGP for 𝑆𝑛 over Q – Plan

Theorem (Recognition criterion for 𝑆𝑛)
Let 𝐺 be a transitive subgroup of 𝑆𝑛 containing a transposition and an
(𝑛 − 1)-cycle. Then 𝐺 = 𝑆𝑛.

By the properties of Galois group, we know that

Theorem (Irreducibility criterion)
Let 𝐿/𝐾 be a Galois extension with Galois group 𝐺. Then 𝑓 (𝑥) ∈ 𝐾 [𝑥] is
irreducible if and only if 𝐺 is transitive on the roots of 𝑓 .

Task: Find an irreducible polynomial 𝑓 (𝑥) ∈ Q[𝑥] of degree 𝑛 whose Galois
group 𝐺 contains a transposition and an (𝑛 − 1)-cycle.

Travor Liu, Ruiyang Tang, Siyu Liu Inverse Galois Problem 9 Dec 2024 19 / 32



Introduction IGP for Abelian Groups and 𝑆𝑛 over Q IGP over Finite Fields IGP over Transcendental Extensions Bibliography

IGP for 𝑆𝑛 over Q

Reduction Modulo 𝑝

Theorem (mod 𝑝 test for irreducibility)
Let 𝑓 (𝑥) = 𝑎𝑛𝑥𝑛 + · · · + 𝑎0 ∈ Z[𝑥] and 𝑝 ∤ 𝑎𝑛 be a prime. If the mod 𝑝
reduction 𝑓 (𝑥) is irreducible over F𝑝, then 𝑓 (𝑥) is irreducible over Q.

We also quote a result from algebraic number theory:

Theorem (Dedekind)
If 𝑓 (𝑥) ∈ Z[𝑥] is monic and 𝑓 = 𝑔1𝑔2 · · · 𝑔𝑘 for distinct irreducibles
𝑔1, . . . , 𝑔𝑘 of degree 𝑛1, . . . , 𝑛𝑘 in F𝑝 [𝑥], then Gal( 𝑓 /Q) contains an
(𝑛1, 𝑛2, . . . , 𝑛𝑘)-cycle.

See Keith Conrad’s article [1] for details.
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IGP for 𝑆𝑛 over Q

IGP for 𝑆𝑛 over Q – Proof

Now, let 𝑓 (𝑥) ∈ Z[𝑥] be monic and 𝐺 = Gal( 𝑓 /Q).

Choose irreducible 𝑓1(𝑥) ∈ F2 [𝑥] of degree 𝑛. By Dedekind’s theorem,

𝑓 ≡ 𝑓1 (mod 2) =⇒ 𝐺 transitive.

Let 𝑓2 = 𝑔1𝑔2 ∈ F3 [𝑥] for irreducible quadratic 𝑔1(𝑥) ∈ F3 [𝑥] and
𝑔2(𝑥) ∈ F3 [𝑥] of degree 𝑛 − 2 s.t.

𝑔2(𝑥) =
{
ℎ(𝑥) 𝑛 odd
𝑥ℎ(𝑥) 𝑛 even

for some irreducible ℎ(𝑥) ∈ F3 [𝑥] of odd degree. If 𝑓 ≡ 𝑓2 (mod 3), then 𝐺
contains some (2, 𝑘)-cycle 𝜎 for some odd 𝑘 , so 𝜎𝑘 is a transposition.
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IGP for 𝑆𝑛 over Q

IGP for 𝑆𝑛 over Q – Proof (Continued)

Now, we have
𝑓 ≡ 𝑓1 (mod 2) =⇒ 𝐺 transitive, (1)

𝑓 ≡ 𝑓2 (mod 3) =⇒ 𝐺 contains a transposition. (2)

Let 𝑓3(𝑥) = 𝑥𝑔3(𝑥) ∈ F5 [𝑥] for some irreducible 𝑔3(𝑥) ∈ F5 [𝑥] of degree
𝑛 − 1, so

𝑓 ≡ 𝑓3 (mod 5) =⇒ 𝐺 contains an (𝑛 − 1)-cycle. (3)

By the CRT, there exists a monic 𝑓 (𝑥) ∈ Z[𝑥] satisfying the conditions (1),
(2), and (3), so 𝐺 = 𝑆𝑛. □
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Properties of Finite Fields

In contrast to the case over Q, not every finite group is realizable over any
given finite field. We start with some preliminary facts:

Proposition
1 Every finite field is of order 𝑞 = 𝑝𝑛 for some prime 𝑝 and some 𝑛 ∈ N.
2 Conversely, for all prime 𝑝 and all 𝑛 ∈ N, there exists a field of order
𝑞 = 𝑝𝑛, unique up to isomorphism (we denote this field by F𝑞).

3 F𝑞 precisely contains all the roots of the polynomial 𝑥𝑞 − 𝑥 ∈ F𝑝 [𝑥].

Proof : 1) Consider the following obvious facts.

i. For all prime 𝑝, there is exactly one field of order F𝑝, up to isomorphism.

ii. Every finite field 𝐹 has characteristic 𝑝 for some prime 𝑝, F𝑝 is a
subfield of 𝐹, and 𝐹/F𝑝 is a finite extension. □
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Properties of Finite Fields (Continued)

Proof : (Continued)

2) & 3) Let 𝑞 = 𝑝𝑛 and 𝑓 (𝑥) = 𝑥𝑞 − 𝑥 ∈ F𝑝 [𝑥]. Let 𝐿 be a splitting field of
𝑓 (𝑥) over F𝑝. It can be proven that the 𝑞 roots of 𝑓 (𝑥) in 𝐿 form a subfield of
𝐿. This proves the existence part of 2).

Let 𝐹 be a field of order 𝑞. It can be shown that all its elements are roots of
𝑥𝑞 − 𝑥, so 𝑥𝑞 − 𝑥 ∈ F𝑝 [𝑥] splits in 𝐹. There cannot be a smaller field in which
it splits, so 𝐹 is a splitting field of 𝑥𝑞 − 𝑥. Recalling that all splitting fields of a
polynomial are isomorphic, the uniqueness part of 2) is proven. □
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IGP over Finite Fields - Proof

Theorem
A finite group is realizable over any given finite field if and only if it is cyclic.

Proof : Let 𝑞 = 𝑝𝑛 for some prime 𝑝, and consider a finite extension 𝐿/F𝑞 of
degree 𝑚 ∈ N. Of course 𝐿 � F𝑞𝑚 as extensions of F𝑞. Consider the function
(called Frobenius endomorphism)

𝜎 : F𝑞𝑚 → F𝑞𝑚 , 𝑥 ↦→ 𝑥𝑞 .

This is an automorphism of F𝑞𝑚 partly due to the theorem below:

Theorem (Freshman’s dream, general version)
Let 𝑅 be commutative ring with prime characteristic 𝑝; then for all 𝑎, 𝑏 ∈ 𝑅
and all 𝑛 ∈ N, we have (𝑎 + 𝑏) 𝑝𝑛

= 𝑎𝑝
𝑛 + 𝑏𝑝𝑛 .
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IGP over Finite Fields - Proof (Continued)

Proof : (Continued)

F𝑞𝑚/F𝑞 is Galois as it is a splitting field of 𝑥𝑞𝑚 − 𝑥 over F𝑞.

We show that 𝜎 ∈ Gal(F𝑞𝑚/F𝑞). Since the unit group F∗𝑞 of F𝑞 is cyclic,
F∗𝑞 = ⟨𝛼⟩, and every non-zero element of F𝑞 is a power of 𝛼. As 𝛼 is also a
root of 𝑥𝑞 − 𝑥, 𝜎 fixes 𝛼.

Now, we show that Gal(F𝑞𝑚/F𝑞) is cyclic. Write F∗𝑞𝑚 = ⟨𝛽⟩. Clearly,
F𝑞𝑚 = F𝑞 (𝛽), so 𝜎𝑘 fixes F𝑞𝑚 iff 𝜎𝑘 (𝛽) = 𝛽, which happens iff 𝑚 | 𝑘 , so

ord(𝜎) = 𝑚 = |Gal(F𝑞𝑚/F𝑞) | = [F𝑞𝑚 : F𝑞],

which means that Gal(F𝑞𝑚/F𝑞) = ⟨𝜎⟩ � 𝐶𝑚. □

The discussion of the IGP over any finite field is therefore complete.
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Transcendental Extensions

Let 𝐿/𝐾 be some field extension. Recall that

Definition
An element 𝛼 ∈ 𝐿 is algebraic over 𝐾 if ∃ 𝑓 (𝑥) ∈ 𝐾 [𝑥] for which 𝑓 (𝛼) = 0.

We introduce the opposite notion:

Definition
An element 𝛼 ∈ 𝐿 is transcendental over 𝐾 if it is not algebraic. 𝐿/𝐾 is
transcendental if 𝐿 contains a transcendental element.

e.g. 𝑒, 𝜋 over Q are transcendental. Q(𝜋)/Q and 𝐾 (𝑡)/𝐾 are transcendental.
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IGP over C(𝑡 )

IGP over C(𝑡)

IGP is completely resolved for the case 𝐾 = C(𝑡), the complex function field.

Tools: complex analysis, Riemann surfaces, covering maps

Theorem (Riemann’s existence theorem, analytic version)
Let S be a compact Riemann surface. For any distinct points
𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ S and 𝑐1, 𝑐2, . . . , 𝑐𝑛 ∈ C, there exists a meromorphic
function 𝑓 : S → C such that 𝑓 (𝑎 𝑗) = 𝑐 𝑗 for 𝑗 = 1, 2, . . . , 𝑛.

RET establishes a connection between finite extensions over C(𝑡) and compact
Riemann surfaces. See §5-6 of Volklein [4] for details.
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IGP over Q(𝑡1 , 𝑡2 , . . . , 𝑡𝑛 )

IGP over Q(𝑡1, 𝑡2, . . . , 𝑡𝑛)

We can relate IGP over the 𝑛-variable function field Q(𝑡1, 𝑡2, . . . , 𝑡𝑛) and IGP
over Q via a result of Hilbert:

Theorem (Hilbert’s irreducibility theorem)
Let 𝑓 (𝑡1, . . . , 𝑡𝑛, 𝑥1, . . . , 𝑥𝑚) ∈ Q(𝑡1, . . . , 𝑡𝑛) [𝑥] be irreducible. Then ∃
infinitely many 𝑞1, 𝑞2, . . . , 𝑞𝑛 ∈ Q s.t. the specialized polynomial
𝑓 (𝑞1, . . . , 𝑞𝑛, 𝑥1, . . . , 𝑥𝑚) ∈ Q[𝑥1, . . . , 𝑥𝑚] is irreducible.

Corollary
If 𝐺 is realizable over Q(𝑡1, . . . , 𝑡𝑛), then 𝐺 is realizable over Q.

See §1 of Volklein [4]. This means one can realize every 𝑆𝑛 by considering
the Galois extension of a general polynomial.
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