Gaps between primes

Travor Liu

16 October 2025

- Why do you want to climb Mt.
Everest, Sir? - Because it’s there.

George L. Mallory

Contents

Preface 4

Notation 5

1 A beginning from the prime number theorem 6
1.1 Partial sum of prime gaps . . . . . . .. ... ... ... ... 6
1.2 Prime gap and natural logarithm . . . . .. ... ... ... ... 7
1.3 Conclusion . . .. .. .. .. 7

2 Prime gaps and the zeros of ((s) 8
2.1 Method of investigation . . . . . . ... ... .. L. 8
2.2  From infinite series to finite sums . . . . . . . . ... ... .... 8
2.3 Choiceof weights . . . . . . .. ... L o 9
2.4 Asymptotic formula for ¢y (x) . . . . ... Lo oL 10
2.5 Proof of Theorem 2.1 . . . . . . .. ... ... ... ... ..... 11
2.6 Conclusion . .. .. ... ... 11

3 Sieve method and small gaps 12
3.1 Mainidea . . . . . . ... 12
3.2 Differencing and summing . . . . . . ... ..o 12
3.3 Treatments for To . . . . . . . . . . ... 13
3.4 Estimation of Ty . . . . . . . . ... 13
3.5 Preliminary handling of the blue term . . . . . . ... ... ... 13
3.6 Application of sieve methods . . . . . ... ... ... ... ... 13
3.7 Lower bound for S . . .. ... ... 14
3.8 Conclusion . . . ... ... 15



Primes in tuples and the GPY sieve

4.1 Prime k-tuple conjecture . . . . . . .. ... Lo
4.2  Prime k-tuples, twin primes, and prime gap . . . . . . ... ...
4.3 Weighted sums . . . . .. ... .. L oL
4.4 Weighted Selberg sieve . . . . . . .. ...
4.5 Conclusion . . . . .. ..o

Elementary transforms and equidistributions

5.1 Preliminary expansion of U . . . . . ... .. ... .. ......
5.2 Preliminary expansionof V; . . . . . .. .. ... ... ... ...
5.3 Equidistribution of primes in arithmetic progressions . . . . . . .
5.4 Asymptotic formula for S . . . ... ...
5.5 Diagonalizationof M . . . . . . ... ... o oL
56 Conclusion . . . .. .. ..

Contour integration and the GPY theorem

6.1 GPY’schoiceof A\g . . . . . . . . ... ...
6.2 Asymptotic expansion of B - - - v v e e e e
6.3 Asymptotic formulas for My, My . . . . . . ...
6.4 The GPY theorem . . . . ... ... ... ... ..........
6.5 Conclusion . . . ... . ...

Limitation of the GPY sieve

7.1 A generalized GPY sieve . . . . . . . . ... .
7.2 Bounded gaps and integral inequality . . . . . . . ... ... ..
7.3 Proof of Soundararajan’s inequality . . . . . . . ... . ... ...
74 Conclusion . . . .. ...

The 70 million bound of Zhang

8.1 Smoothed GPY sieve . . . . . . .. ... .. L.
8.2 Preliminary treatments for M; . . . . ... ... ... ...
8.3 Estimates of 111,721,731 - - « « v v v v v i i e e e
8.4 Bounds for My and My . . . . . .. ...
8.5 Bounded gaps between primes . . . . . . ... ...
8.6 Conclusion . . . ... ... ...

Maynard’s dimensional reduction strike I

9.1 GPY sieve and the dimensional reduction strike . . . . . . . . ..
9.2 Construction of the dimensional reduction sieve . . . . . . . . ..
9.3 Preliminary treatments for S; . . . . ... ..o
9.4 Transformationof @1 . . . . . . . ... ... ... ... ...
9.5 Asymptotic formula for Sy . . . . . ...

9.6 Preliminary treatments for S{™ .. ... ... ... ... ..

9.7 Diagonalization of ng) .......................
9.8  Asymptotic formula for ™ ...

9.9 Asymptotic formula for yﬁj”)rk ...................

16
16
17
17
18
18

20
20
21
23
23
24
25

26
26
27
30
32
32

34
34
36
36
38

39
39
40
41
43
44
45



9.10 Analytic expressions for 77, TQ(m) .................. 56

9.11 Maynard’s variational problem . . . . . ... ... ... ... .. 62
9.12 Conclusion . . . . . . . . . . . e 62
10 Maynard’s dimensional reduction strike 11 63
10.1 Optimization procedure for large k . . . . . . . . .. . ... ... 63
10.2 Simplex and center of mass . . . . . .. ... ... 64
10.3 The optimal choiceof g . . . . . .. ... ... ... ... ... 66
10.4 Proof of Theorem 10.1 . . . . . . . . . . ... .. ... ...... 68
10.5 Optimization procedure for small k& . . . . . . ... ... ... .. 68
10.6 Optimization of the quadratic form . . . . . . . . ... ... ... 69
10.7 Proof of Theorem 10.2 . . . . . . .. . . ... .. ... ...... 69
10.8 Conclusion . . . . . . . . . ... e 70
References 71



Preface

This document is a translation of my Zhihu article series on prime gaps, written
in 2022 while I was an undergraduate student at University College London.

The first article discusses a corollary of the prime number theorem

lim inf Pntl — Pn <1< hmsupw.
n—oo  logp, n—ooo  lOgpn

The second article relates the prime gap and the distribution of zeros of the
Riemann zeta function (s): If © is the supremum of the real parts of zeros of
¢(s) in the critical strip, then

Pn+1 — Pn < p'rez logpn

The third article introduces sieve methods into the picture and proves an early
result of P. Erdos [8]
P Pn+1 — Pn
liminf ———

<1.
noe logp,

The rest of the series is dedicated to bounded gaps between primes. Three
articles are devoted to developing the groundbreaking sieve of Goldston, Pintz,
and Yildirim [11], eventually showing that
lim inf(ppy1 — pn) < C (0.1)
n—oo
for some C' < oo provided that the level of distribution # of primes in arithmetic
progression is larger than § (The Bombieri-Vinogradov theorem gives 6 = 3).
This is then followed by an article addressing the limitations of their method.

Subsequently, we discuss the breakthrough work of Yitang Zhang [23], who over-
came the difficulties in the GPY sieve and showed that one can unconditionally
take C' =7 x 107 in (0.1). Zhang’s treatment of the error terms is too technical
to be presented in the series, so the article only details the developments of the
main term in Zhang’s sieve.

The last two articles are dedicated to the work of James Maynard [14], in which
he showed that one can take C' = 600 in (0.1). In addition, he showed that
Hminf (ppym — pn) < m3e*™. (0.2)

n—oo

The first of these develops Maynard’s version of the GPY sieve and converts it
into a variational problem. The second article discusses Maynard’s solution to
the variational problem and deduces (0.2) and his estimate for C.

Travor Liu
Stanford, California
September 18, 2025



Notation

p denotes a prime number.
s = o + it refers to a complex number with real part ¢ and imaginary part ¢.

p = B+iy refers to a zero of the Riemann zeta function ¢(s) in the critical strip
with real part 8 and imaginary part ~.

n = a(q) means n = a (mod q).

(x;q,a Z 1 and 7(x) = w(x;1,1).

p<lzx
n=a(q)

li(z) is the logarithmic integral defined by the principal value integral

1—e
i ()
e—0+ 14/ logu’

A(n) is the von Mangoldt function equal to log p if n = p* and zero otherwise.

zig,a) = Y A(n) and ¢(x) = ¢(x;1,1).

n<zx
n=alq)




1 A beginning from the prime number theorem

In 2013, Yitang Zhang [23] caused a sensation in the mathematical world by
establishing the existence of infinitely many pairs of primes whose difference is
bounded by 70 million. After Zhang, this bound is continually reduced. As of
today, the best bound is 246 obtained by the Polymath project [15] in December
2014. In this series of articles, we will introduce some important results in the
study of prime gaps.

In this article, we use tools from analytic number theory to discuss the most
basic properties of the prime gap.

1.1 Partial sum of prime gaps

Denote by p,, the n’th prime. Then by definition,

PN+1=D1+ (PN+1 —P1) =p1+ Z (Pn+1 = Pn),
1<n<N

so when N = |z], one has

S(x) = Z(Pnﬂ —Pn) =DPlzj+1 — D1 (1.1)

n<x

To better study the properties of (1.1), we need to estimate the size of p|;|41
with respect to x. Let 7(z) be the number of primes within 2. Then the prime
number theorem states that

(x) x

~ . 1.2
log (1.2)

Set = p,, so this becomes n(z) = n ~ p,/logp,. Taking logarithms, we get
logn ~ log p,,. Substituting this back into (1.2), we obtain

pn ~ nlogn. (1.3)
Remark. By using a stronger version of the prime number theorem, we can
improve (1.3) to p, = n(logn + loglogn + O(1)).
Plugging (1.3) into (1.1), we deduce that

S(x) ~ xlogx. (1.4)

For sequences a,, and b,,, we say that b, is an average order of a,, is ), . a, ~
Y on<sbn as @ — oco. According Stirling’s formula, we know Y _ logn ~
xlog x, so logn is an average order of p,+1 — p,. This information motivates us
to compare the magnitude of the prime gap with the natural logarithm.



1.2 Prime gap and natural logarithm

Suppose a, b are constants such that alogn < p,+1 — p, < blogn for all large
n. Then
[a+o(1)]|zlogz < S(x) < [b+ o(1)]zlog . (1.5)

Now, plugging (1.4) into (1.5), we conclude that a < 1 < b. This means for all
€ > 0, there exists infinitely many n such that p,11 — p, > (1 — ¢)logn and
infinitely many other n such that p,11 —p, < (1+¢)logn. Combining this with
logn ~ log p, and the language of limsup and liminf, we obtain the following
inequalities:

lim inf 22— P (1.6)
SR logpn
limsupzM >1. (1.7)

n—oo  logDn

1.3 Conclusion

In this article, we began by discussing the partial sum S(z) of prime gaps. Using
the prime number theorem, we proved S(z) ~ z log z, allowing us to deduce (1.6)
and (1.7). Specifically, (1.6) indicates that the gap between consecutive primes
can be as small as their logarithms infinitely many times, while (1.7) indicates
that the gap can be as large as their logarithms indefinitely. Hence, the prime
number theorem marked the commencement of two types of investigations into
the prime gap:

Small gaps between primes: Can we find infinitely many n such that p, 11—
pn < f(n)? The state-of-the-art result in this direction is f(n) < 246 due to
Polymath.

Large gaps between primes: Can we find infinitely many n such that p,, ;1 —
pn > F(n)? The best record up to now is

log nloglogn loglogloglogn
logloglogn

F(n) >

due to Ford—Green—Konyagin—-Maynard—Tao [9] in 2017.
In the subsequent articles, we focus on the small gaps between primes.

June 23, 2022
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2 Prime gaps and the zeros of ((s)

In 1936, Harald Cramer [5] proved using complex-analytic methods that under
the Riemann hypothesis,

Pn+1 —Pn = O(vpn 1ngn)'

In this article, we prove a generalization:

Theorem 2.1. When © > % is the supremum of the abscissa of the zeros of
¢(s), one has
Pnt1 — o = O(py, log pn).

2.1 Method of investigation

Let w(x) be the number of primes within . Then 7 (y) > = (z) if and only if
(z,y] contains a prime. This observation allows us to estimate the upper bound
of prime gaps.

The relationship with the zeros of ((s) is established by Riemann’s explicit
formula:

T—+00 log
ST

m(z) = li(z) — lim 2,; li(w”)+0< VT ) (2.1)

Because the sum over zeros in (2.1) is conditionally convergent, Cramer’s deriva-
tion relies on his earlier extensive study [4] of the sum }_ e”* in 1919. Today,
we have more advanced tools to prevent us from directly manipulating condi-
tionally convergent series, so we can get a simplified proof for Theorem 2.1.

2.2 From infinite series to finite sums

For various conveniences, in analytic number theory, the partial sum ¢ (z) of
the von Mangoldt function A(n) is used in place of 7(x) when it comes to the
distribution of primes, for it only differs from

I(x) =Y logp
p<z

by an error of < /x. Therefore, if we can find some f(z) growing faster than
vz such that for L = L(z),

Y@ L)= Y Al)> flx), (2.2)

rz—L<n<z+L

then the interval (z — L,z + L] will contain a prime. By Perron’s formula [6, p.
109], one has for 2 < T < z that

V) =z— 3 xﬂ+o(moﬁ2x). (2.3)

[Sp|<T




As the formula (2.3) only involves a finite sum, we can manipulate terms freely
without worrying about convergence issues.

Let N(T) be the number of zeros of {(s) with 0 < 8 <1and 0 <~ <T. Then
by the Riemann—-von Mangoldt formula [6, p. 98], we have

T T T
log — — 7 + O(logT). (2.4)

:ﬂ 2T T

N(T)

Combining (2.4) with partial summation, one has

> ﬁ = O(log? T).
[Sp|<T
Setting T' = 2'~9, we see that (2.3) becomes
Y(z) =z + O(2® log® z).
Therefore, when L < x, there exists absolute A > 0 such that
Y(x, L) > 2L — Az®log® z.

Set L = Az®log?z, so that the right-hand side is > 2©log®z. By partial
summation, we see that there exists some C > 0 such that the number of
primes in (z — Cz® log® x, x + Cz® log? x] is > 2© log? .

Since z + Cz® log? z = x, we also deduce that

Theorem 2.2. When © > % is the supremum of the abscissa of the zeros of
¢(s), one has

Pnt1 — Pn = O(pS log® pp).

Thus, we see that a direct asymptotic evaluation of (2.2) only gives a result off
from Theorem 2.1 by a logarithm. However, we can fill the gap by introducing
a weight w(n) > 0 such that

Y(x, L) > Z w(n)A(n).

2.3 Choice of weights

We are now in a situation similar to one possible development of the large sieve.
By taking ideas from [6, p. 155], we introduce the linear weight:

B |z —t|
w(t)—max(l 7 0,

so we have

x+L x+L
S uwmam = [ wdsw) = - [ w e

—L

x+L x—1L
—1 [ v [ e

n



Now, defining

_ a, 2.5
wie) = [ v (2.5)
we simplify this to
1 1 2
¥(z, L) > z%(l‘ + L)+ E%(x -L)— Z%(x)- (2.6)

In the rest of this article, we estimate the right-hand side of (2.6) by evaluating
11 asymptotically.

2.4 Asymptotic formula for ;(z)
By integration by parts, one has
(o) = 20(e) = [ o) = 3o = ma). (27)
n<x

Using the observation that for & > 0,

1 k+ico ys+1
— ds = ~1,0),
2mi /k_ioo s(s+1) s = max(y )

we can rewrite (2.7) into a contour integral:

B —1 2+i00 st CI
P1(x) = 9 /Q_ioo G Z(s)ds (2.8)

Moving the contour to o = —1 and applying standard estimates for ¢’/( (see,
for example, [6, p. 108]), we obtain

as

2
i) = 5 - ; S HOW-: (2.9)

By partial summation with (2.4), one finds that the sum over p converges ab-
solutely. Motivated by the arguments in the previous section, we still truncate
the sum, so it follows from

1 1 T AN (u)  logT
Y ommeY oo <
asrPletl) et e u

that for 2 < T < z, (2.9) becomes

x? s 9t log x
CIOEE 2% +O< 7 ) (2.10)
v

Remark. We get an error better than directly integrating (2.3).

10



2.5 Proof of Theorem 2.1
Plugging (2.10) into (2.6), one has
(x + L) + (x — L)? — 222

Y(z,L) =

2L
L T syt
L 1
gt p(p+1)
29t logx
e (LT ) .

Notice that

yp+1 Y ’ 1 Y 1
—_ = dt/ uf~ du:/ —w)u’" du,
p(p+1) /0 0 0 =

so the blue part becomes
(z+ L)PT + (z — L)PT! — 2P F1
p(p+1)

x+L
— [ ele e =0z,
x—L

Plugging these back, we get
Y(x,L) > L — Ay (LTx )2 logz — Ay(LT2z™ )" '2® log z.

Now, setting T = xL~!, A3 > A; + Ay, and L = A32® log x, we deduce that

Z logp > (z, L) > 2 log z,
rz—L<p<zx+L

which indicates that for some C' > 0 and all large , the interval (z, z+Cx® log z]
always contains a prime, completing the proof of Theorem 2.1

2.6 Conclusion

In this article, we connect the problem of prime gaps with the zeros of ((s)
using explicit formulas. By using the truncated explicit formula (2.3), we deduce
Theorem 2.2. Finally, by introducing weights to the estimation of ¥ (x, L), we
improved Theorem 2.2 to Theorem 2.1.

From the derivations, we can also find out the limitations of the method. Be-
cause ¥(x) and ¥(z) differ by an error of < \/x, the approach in the present
article is incapable of going beyond p;, 1 —pn = O(y/pn). Nevertheless, the idea
of introducing weights in the process of refining Theorem 2.2 plays a crucial role
in the study of prime gaps. Stay tuned for the new articles!

June 29, 2022
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3 Sieve method and small gaps
In §1, we proved using the prime number theorem that

liminf 22— Pr g (3.1)
nhoe logpy

The first improvement to (3.1) was given by Hardy and Littlewood in 1926.
In 1926, they applied the circle method and successfully replaced the right-
hand side of (3.1) with 2 under GRH. In 1940, Rankin [16] replaced 2 with 2
under GRH. In the same year, Erdds [8] used an elementary method to show
unconditionally that the right-hand side of (3.1) can be replaced with 1 — 7 for
some 77 > 0. In this article, we will walk through Erdos’s approach.

3.1 Main idea

According to the definition of limit infimum, if (3.1) cannot be improved, then
for all 6 > 0, there is some ng(d) such that

n>ng = Ppi1 — Pn > (1 —9)logp,.

On the other hand, there exist infinitely many n for which

Pn+1 — Pn < (1 + 5) logpn~

If we can derive a contradiction from this information, then we can deduce

lim inf 22— Pr g
n—oo  logpn

and thus completing the proof.

3.2 Differencing and summing
Denote by q1,q2,...,q: the primes in (z,2z]. Then evidently, = ¢ — ¢1 < x.
We can also write = as a sum of prime gaps:
S=g—ga+qa1—qot - +e-—a= Y (G —an (3.2)
1<k<t

Let T7 be the number of k’s such that
(1—-0)logqr < qry1 —qr < (14 9)logqy

and Ty be the number of k’s such that this inequality is false. Then by (3.2),
we have
S>Ti(1—0)logx+ To(1+9)logx. (3.3)

If we can show that the right-hand side of (3.3) is > z for sufficiently large z,
then we can reach a contradiction to conclude. To fulfill this objective, we need
to estimate 77 and 75

12



3.3 Treatments for 7T,

Let 7(y) be the number of primes < y. Then, according to the prime number
theorem,

Ty =7(2z) —w(x) =Ty = [1 + o(1)] gz Ti.
Plugging into (3.3), we get
S > —-2Idlogz + [1+ 6+ o(1)]x, (3.4)

completing the easy step of our derivation.

3.4 Estimation of T}

In analytic number theory, a typical strategy to estimate a single sum is to
convert it into a double sum and then interchange the order of summation.
Define I = [(1 — 0) log x, (1 + 0) log 2], so

n< > 1=y > o1 (3.5)

1<k<t mel  1<k<t
qr+1—qr €l dk+1—qk=m

3.5 Preliminary handling of the blue term

Because we are looking for an upper bound, we can relax the conditions in
the summation to simplify the task. In the context of (3.5), we can weaken
qk+1 — gk = m to qx + m being a prime, so

Yoo Y 1= > L (3.6)

1<k<t 1<k<t r<p<2x
qk+1—qr=m qr+m prime p+m prime

For an integer NV > 1, it follows from the pigeonhole principle that N is a prime
if and only if it has no prime factor < /N, so when 2 < z </, one has

DI > 1. (3.7)

r<p<2x r<n<2x
p+m prime p<z=pin(n+m)
3.6 Application of sieve methods

Let
A={nn+m):x<n<2z}, Ag={ac A:dl|a},

and P denotes the set of primes. Then under the standard sieve notation, the
right-hand side of (3.7) is precisely S(A, P, z). Therefore, we have transformed
the prime gap problem into a sieve problem.

13



Let v4 be the number of solutions to n(n +m) =0 (mod d) in Z/dZ. Then
Ad = “a +0(1)

and for prime p,
1 pm

VPZ{Q ptm

Consequently, by the fundamental lemma of sieve theory [12, Theorem 2.2],

there exists some A > 0 such that for z = 24,

v p—1 2
2<p<z 2<p<z

2<p<z
plm
< H(1+ ! ><< : H(1+1>
log? p—2 log” x p)’
plm plm
p>2
Plugging this into (3.7), (3.6), and (3.5), we obtain
log? 1 1
ne S (145) <255
me&l plm mel dlm
1 0 log x 1
= D g2l X —E > 5
d<(14d)log2x mel d<(1+49)log 2z d<(1+49) log 2z

d|m
< dlogx + loglogx < dlogx.

Having completed the estimation of T}, we proceed to the final computations.

3.7 Lower bound for S

Plugging our conclusions in the previous section into (3.4), we see that for some
large A > 0, one has

S>(1+86— A%z =[1+6(1— Ad)x.

Thus, if § < A~!, the right hand side will be > x, creating a contradiction to
S < z. There for there exists some 1 > 0 such that

liminf 22 P <9 5 (3.8)
n—eo  logpy

14



3.8 Conclusion

In this article, we improved the PNT bound (3.1) to (3.8) by introducing sieve
methods. In 1954, Ricci showed that (3.8) holds for n > %. In 1965, by
replacing the GRH assumption with the Bombieri—Vinogradov theorem in the
Hardy—-Littlewood argument, Bombieri and Davenport [2] showed that n > %
During the second half of the 20th century, these bounds were improved by
Pilt’ai, Uchiyama, Huxley, Maier, and others. Eventually in 2009, Goldston,
Pintz, and Yildirim [11] settled the question by establishing
Pn+1 — Pn

liminf ———— =10 (3.9)
n—oo  logpp

via a deft sieve design.

Not only did the method of Goldston, Pintz, and Yildirim produce (3.9), but it
also demonstrated that under a hypothesis on the regularity of the distribution
of primes in arithmetic progressions, there exist infinitely many pairs of primes
whose distance is bounded by 16. Their methods will be expounded in the next
few articles of the series. Please stay tuned for updates!

July 6, 2022
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4 Primes in tuples and the GPY sieve

In the previous articles, we have investigated the prime gap p,+1 — p» via both
analytic and elementary methods. In the next few articles, we focus on a work
that made extensive use of both elementary and analytic methods — the GPY
sieve, which is named after Goldston, Pintz, and Yildirim who authored the
2009 paper [11]. Their work indicated that under a certain assumption on the
distribution of primes in arithmetic progressions, there exist infinitely many
pairs of primes with bounded distance.

In the present article, we discuss the motivation of the GPY sieve from a his-
torical perspective. The technicals will be deferred to future articles. From now
on, let us turn our focus back to the 20th century.

4.1 Prime k-tuple conjecture

Let H = {hi1,ha,...,hi} be a set of integers. Then we can formulate a conjec-
ture as follows:

Conjecture 4.1 (Naive prime k-tuple). For all H, there exist infinitely many
n such that each n + h; is prime for 1 <1i < k.

The term “naive” is added because we can easily come up with a counterexam-
ple. Take H = {1,2,--- k —1,k}. Then it is clear that for each n € Z, at least
one of n + j is divisible by k, so they cannot all be primes. Consequently, we
need to impose some restrictions on H to make the conjecture more plausible.

Admissible k-tuple By generalizing our previous counterexample, we see
that Conjecture 4.1 is false as long as we can find some prime p such that for
every n, p divides some n + h;. In other words, let

Qn)=m+h1)(n+hs) - (n+ hg).

Then the conjecture is false if Q(n) is always divisible by a fixed prime p.
Now, let v, be the number of n € Z/pZ such that

Q(n)=0 (mod p).

Then the condition above is equivalent to v, = p for some p. For H to satisfy
Conjecture 4.1, it is thus necessary that ¥p,v, < p. Therefore, we say H is an
admissible k-tuple if Vp, v, < p.

Remark. H is admissible as long as v, < p for all p < k.

Based on the analyses above, Hardy and Littlewood [13, p. 61] conjectured the
following:

16



Conjecture 4.2 (Hardy-Littlewood prime k-tuple). Let H be an admissible
k-tuple. Then there exist infinitely many n such that each n+ h; is a prime for
1 <i<k. Moreover, as © — o0,

#{n<zxz:n+h; prime,1 <i<k}~H w

1062 (Y-

If H is not admissible, then H = 0, so if Conjecture 4.2 is valid, then Conjec-
ture 4.1 holds if and only if H is admissible.

logk z’

in which

4.2 Prime k-tuples, twin primes, and prime gap

By sieve methods, one can easily show that for each k£ there is some C} such
that for each admissible k-tuple H, there exists infinitely many n such that each
n + h; is a product of at most C, primes. In particular, when k = 2, it follows
from the method of Jingrun Chen [3] that

Theorem 4.1 (Chen, 1973). For each even h, there exist infinitely many primes
p such that p+ h is either a prime or a product of two primes.

However, the prime k-tuple conjecture has more inspirations. If for a fixed
admissible H, we can find infinitely many n such that at least two members
of n+ hy,n + ho,...,n + hy are primes, then we find infinitely many pairs of
primes with bounded distance:

im i —pn) < ; — hjl. :
liminf(pn iy —pn) < max  [hi —hy| (4.1)

It is this inequality that makes Goldston, Pintz, and Yilidirim construct their
seminal sieve. Having analyzed the principles, we turn to computations.

4.3 Weighted sums

Abstractly, for sets X, Y C Z, to show that they have a non-empty intersection,
one direct approach is to prove |[X NY| > 0. To achieve this, it is also helpful
to introduce weights. Let w : X — R be such that

w(n) >0 ney,
<0 né¢v.

Then
S = Z w(n) >0

nexX

is a sufficient condition to |[X NY| > 0.
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Now, we apply this philosophy to the problem of prime gaps. Let xp be the
characteristic function for primes. Then, based on the analyses in the previous
section, we define

SNy = > | > xe(n+hi)—1 (4.2)

1<n<N \1<i<k

Therefore, to establish (4.1), it suffices to show that limy_ s S(INV) = +00.

Nevertheless, according to the prime number theorem, ) _\ x(n) ~ N/logN,
making (4.2) negative for large N, so (4.2) cannot help us investigate prime
gaps. Regardless, Goldston, Pintz, and Yildirim did not give up and decided to
take in some ideas from Selberg.

4.4 Weighted Selberg sieve

In 1947, Selberg developed a powerful sieve [19] based on the non-negativity
of squares. By incorporating Selberg’s idea into the picture, we see that when
{A4} is a real sequence such that A\; = 1, the following

2

SN =Y > xeln+hi)-1 > (4.3)
)

n<N \1<:i<k d|Q(n

diverging to positive infinity can also serve as a sufficient condition to (4.1).
When n is small, there would be some computational complications concern-
ing the h;’s, so Goldston, Pintz, and Yildirim replaced the range of the outer
summation with a dyadic interval:

2

S'"(N)y= > > xe(n+hi) -1 > (4.4)

N<n<2N \1<i<k dlQ(n)

Thus, (4.1) will directly follow from S”(N) > 0.

4.5 Conclusion

In this article, we began by generalizing the twin primes conjecture to prime
k-tuple conjectures. Realizing the counterexamples to our naive conjecture Con-
jecture 4.1, we introduced the notion of admissible tuples and formulated the
Hardy—Littlewood conjecture Conjecture 4.2. Although we are unable to prove
the conjecture using sieves, through the inequality (4.1), a partial form of this
conjecture can lead to significant progress in the prime gap problem.

With this realization in mind, we developed weighted sums and combined ideas
from Selberg, resulting in the GPY sieve (4.4).
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Although Goldston, Pintz, and Yildirim’s initial choice of A4 fails to estab-
lish bounded gaps between primes unconditionally, analyzing their work is still
valuable. Only through in-depth analysis of the GPY sieve can we fathom their
limitations and properly appreciate the works of Yitang Zhang and James May-
nard. Due to space reasons, these discussions will be presented in subsequent
articles. Please stay tuned for updates!

July 24, 2022
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5 Elementary transforms and equidistributions

In the previous article, we formulated the GPY sieve using the Hardy-Littlewood
k-tuple conjecture.

2

S = Z Z X]}»(n + hi) -1 Z Ad (5.1)

N<n<2N \1<i<k d|Q(n)

and showed that the existence of infinitely many pairs of primes with bounded
gaps will follow from S > 0 for all large N. In this article, we elaborate on the

computation of S:
2

U= > > (5.2)

N<n<2N \d|Q(n)

Vi= > xe(nth) | D M (5.3)

N<n<2N d|Q(n)

Consequently, if we can compute the asymptotic expansion for U and each V;,
then (5.1) can be studied by >, ., Vi — U.

5.1 Preliminary expansion of U
By interchanging the order of summation, (5.2) immediately becomes
U= Z Ady Ay Z 1.
dy,da N<n<2N

[d1,d2]|Q(n)

Let v4 denote the number of solutions to Q(n) = 0 (mod d) in Z/dZ. Then in
each subinterval of (N, 2N] of length d, there are exactly v4 many n’s such that

d|Q(n), so

N
U= Ai, AdoV{dy o] {[dd] + 0(1)} = NMy + Ey. (5.4)
dr,ds 1,02
Writing gy (d) = v4/d, My becomes
My = Z gU([dldeDAdl)‘dr (55)

d1,dz

Similar to Selberg’s sieve, we can assume a priori that |Ag] < 1 and A4 is
supported on square-free integers in [1, R], so we have

Eul < > @2 (d)pP(do)vigyan < 12 (d)3 Dy,
d.da<R d<R?
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By the Chinese remainder theorem, v, is a multiplicative function of d, so it
follows from Rankin’s trick that this is

2 w(d)
<r Y W:Ra I <1+3vp),

p\d:>p§R2 p<R? P

Since Q(n) is a polynomial of degree k, it has at most k roots in Z/pZ, which
indicates that v, < k and

k k
By < R* ] <1+ i;) < R’exp{ > LN R?(log R)**. (5.6)

p<R? p<R?

Comparing (5.6) to (5.4), we see that R cannot exceed the square root of N for
otherwise the error term Ey may exceed the main term N M. Thus, the only
remaining task for U is the computation of My . For now, we transfer our focus
to V.

5.2 Preliminary expansion of V;

After interchanging the order of summation, we need to compute

Y oxent+h)= > > 1. (5.7)

N<n<2N 1<a<d N—h;<p<2N—h;

Q(n)=0(d) Q(a)=0(d)  p=a+h;(d)
If a+ h; is not coprime to d, then the purple term vanishes for all large N, so we
impose an extra condition (a + h;,d) = 1 outside. Hence, by the prime number
theorem in arithmetic progressions,

> xe(n+hi)

N<n<2N
Q(n)=0(d)

= Y [r2Nid,a+hi) = 7(N;d,a+ hy) + O(1)]
1<a<d

Q(a)=0(d) (5.8)
(Clr‘rh1 ,d):1

2N
- ¥ Md) / 1j;u+0{E1<N7d>}],

1<a<d N
Q(a)=0(d)
(a+h,;,d):l

in which

E(z,d) = (;Ibz)zl

( ) 1 /‘T du
T x;q,a —_ — —_—
¢(q) Jo logu

and F1(N,d) = E(N,d) + E(2N,d). Since the dependence on a + h; has been
eliminated in (5.8), we can now compute the green sum directly. Set

bi(d) =#{1 <a<d:d|Q(a),(a+ hi,d)=1}.
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Then b;(d) is multiplicative and b;(p) = v, — 1, so

bi(d) = b(d) = [[(vp — 1) (5.9)
pld
Therefore, (5.8) becomes
b(d) [N du
> xeln+h) = ((d))/ =+ O{b(d) By (N, d)}.
N<n<2N i N ol
Q(n)=0(d)
Plugging this back into (5.3), we get
2N
du
Vi=M — E 1
V[ e o), (510
in which when gy (d) = b(d)/(d), we have
My =" gv([dy, d2])Aa, Aas- (5.11)
di,d2

By Cauchy—Schwarz, Ey becomes

By < > i b(d) By (N, d)
d<R2
1/2
< Z 12 (d)9° Db?(d) Er (N, d) (5.12)
p|ld=p<R?
1/2

x | > p*(d)Ey(N,d)

d<R?

From 7(x;q,d) < x/q, we know Ej(z,d) < z/d, so the blue part becomes

2 w(d)p2
> pAA DA E (N, d <N Y M
pld=p<R? pld=d<R?
9% (p 1)2
- N H (1+ > N H ( 7) > (5.13)
p<R?2 p<R? p

—1)2 5
<N H (1 + 9(1€pl)> < N(log R)?*+=1",

As for the brown part, expanding gives

S M) E(N.d) < Y E(N,d)+ Y E(2N,d). (5.14)

d<R? d<R?2 d<R?

To estimate the remaining sums on the right, we need a concept known as the
level of distribution of primes.
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5.3 Equidistribution of primes in arithmetic progressions
From the naive prime number theorem for arithmetic progressions, we know for
fixed g and (a,q) =1,

m(;q,a) ~ li(z)/¢(q),
but in many situations, we need to sum over (x; q,a) over q. As a result, we
encounter error terms of the form

li(x)
E(x,Q) = max |7(z;q,a) — )
qu(;? (a.9)=1 ¢(q)

By the Siegel-Walfisz theorem [6, p. 133], we know that for Q = (logz)4, one
has "

E(z,Q) <4 — - (5.15)

log™ x

This later allowed I. M. Vinogradov [22] to solve the ternary Goldbach problem.
In 1948, A. Rényi [18] established the existence of 6§ > 0 such that (5.15) con-
tinues to hold for Q = 2?~¢, allowing him to demonstrate that every large even
integer is a sum of a prime and a product of < C' primes for some fixed C' > 0
(a.k.a. proposition {1,C}). In 1965, A. I. Vinogradov [21] and E. Bombieri [1]
independently showed that (5.15) holds when § = £, improving {1, C} to {1, 3}.
In 1970, Elliot and Halberstam [7] conjectured that (5.15) is valid even if 6 = 1.
As a result, we introduce the following proposition:

Proposition 5.1 (EH()). For alle > 0 and Q = x%~¢, (5.15) holds.

When this proposition holds, we say that the primes have level of distribution
0.

Therefore, the Bombieri-Vinogradov theorem is equivalent to EH (%) and the
Elliot—Halberstam conjecture is the same as FH(1). For the sake of generality,
we carry out subsequent computations with an unspecified # and the assumption
of EH(6).

According to (5.14), we see that for R = N27¢, one has

> WA(d)E(N,d) <

a .
d<R? log N

Plugging this with (5.13) into (5.12), we get Ey <4 Nlog= N, so the error
terms are no longer a concern.

5.4 Asymptotic formula for S
Plugging (5.4) and (5.10) into (5.1), we deduce from

/2N du 1 2N
~ du =
N logu logN Jy log N
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that
~ ——(kMy — My log N). 1
S 1 N( V U 108 ) (5 6)

Our goal is accomplished as long as the red component is positive for large N.
Thus, we should focus on the quadratic forms My, My .

5.5 Diagonalization of M

According to (5.5) and (5.11), both My and My can be computed in the same
manner, so we let (M,g) denote any one of (My,gy) and (My,gy). Then it
follows from the multiplicativity that

M = )\ di)\ ds).
dzd dl, 4, 9(d1)Aa,g(d2)
1,42

As in the derivation of Selberg’s sieve ([12, Chapter 3] or [10, §7.1]), define a
multiplicative function h(d) by

9(p)
h p — ,
) 1—g(p)
so one has 1
M= gld)Aagld)he; D h(m)
o2 ml{ds,d2)
1
= Z m Z 9(d1)Aa, g(d2) g, -
m<R di,d2<R
m|(d1,dz2)

Therefore, when we define the following quantities:

gu(p Vp
= , 5.17
H —gu(p) EP—% (5.17)
gv (p) vp —1
h(d) = = (5.15)
s L) g Py
o =3 gu@ra = g0(m) 3 g0 () (5.19)
d<R n<R/m
m|d (n,m)=1
Bm = Z gV(d)Ad = gV(m) Z gV(n))‘nmy (5'20)
d<R n<R/m
m|d (n,m)=1

we can rewrite My in (5.5) and My in (5.11) into diagonal forms:

a2

2
=> - E:n Mvzn;%hv&). (5.21)

m<R
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5.6 Conclusion

In this article, we began the investigation from (5.1). By interchanging the
order of summation on quadratic forms, we transformed (5.1) to (5.16). By
introducing the prime number theorem for arithmetic progressions in the esti-
mation of Ey, we effectively demonstrated the role of the level of distribution
in the development of the GPY sieve. Finally, by defining the auxiliary function
h(d), we reduce the quadratic forms My, My in the main term into diagonal
forms (5.21).

Now, we have finished the derivations of the elementary part of the GPY sieve
that is independent of the choice of Ay. In the next article, we will introduce a
special choice of Ay and apply complex-analytic methods to obtain asymptotic
formulas for a.,, and B,,, deriving the analytic part of the GPY sieve. Please
stay tuned for updates!

Aug 4, 2022
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6 Contour integration and the GPY theorem

In the previous article, we applied elementary methods to transform the GPY
sieve (5.1) into

N
~ —— (kM — My log N 1
S logN( v vlog N), (6.1)
in which ) )
Q
My = T My = T (6.2)
gR hy(m) ng:R hv (m)
am = gu(dra=gu(m) > gu(m)Aum, (6.3)
d<R n<R/m
m|d (n,m)=1

B =Y gv(dAa=gv(m) > gv(n)Aum. (6.4)
d<R n<R/m
mld (n,m)=1
In this article, we will obtain asymptotic formulas for these quantities. Thus,
we need to specify the sieve parameter \g.

6.1 GPY’s choice of \;

Since Q(n) is a polynomial of degree k, one naturally believes that the GPY
sieve is a k-dimensional sieve problem. As a result, it is plausible that we can
achieve the best result by plugging in the optimal \; for the k-dimensional
Selberg upper bound sieve:

k
A = p(d) <1j§gR}éd) . (6.5)

Remark. The actual optimal Ayg in a Selberg sieve problem depends on g and
h but is asymptotic to (6.5) [12, Lemma 5.4].

However, the computations of Goldston, Pintz, and Yildirim suggest that under
(6.5) we only have S < 0 even assuming FH () at 6 = 1.

As a result, the authors decided to attack the problem using a sieve of a different
dimension. Specifically, they set A\; to be the optimal parameter for a (k + £)-
dimensional Selberg upper bound sieve:

k+/4
M = uld) (ljig%d) | (6.6)

Thus, we proceed to the expansion of o, B, using (6.6).
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6.2 Asymptotic expansion of «,,, 5,,

According to (6.3) and (6.4), v, and S, have very similar structures, so we
only elaborate on the computation for «,,, and the reader can use an almost
identical argument to treat S,,.

By contour integration, one has

| c+ioco s m
m! / LA {(logx) x>1, (6.7)

2mi gm+1 0 0<z<l.

c—1i00

Plugging this into (6.3), we get

_ plm)gu(m) (k+ O (57 pn)go(n) _a*
“m = log RFFT 2mi . Z e Swﬂds, (6.8)
c—100 n>1
(n,m)=1
FU(G)

where = R/m. By the Euler product formula for Dirichlet series with multi-
plicative coefficients, Fy/(s) can be rewritten into

D) T %)

ptm ptm

Since v, < p, Fy(s) converges absolutely when o = R(s) > 0. To obtain
asymptotics for (6.8), we need to analytically continue Fy;(s) to a larger domain
containing o = 0.

Analytic continuation of Fy(s) Since gy(n) does not have good analytic
properties, we introduce a certain power of the Riemann (-function to offset the
poles of Fy(s).

Since v, < k if and only if Q(n) has a repeated root in Z/pZ, so defining

A= T |hi—hyl,

1<i<j<k

we see that v, < k if and only if p|A. Because A only depends on H, we see
that all but finitely many p satisfies v, = k, so when we factor Fy;(s) as

Fy(s) = ¢ *(s+ 1)Gu(s), (6.9)

the infinite product

27



will be analytic in a region larger than ¢ > 0. Using the power series expansion
of the logarithm, we see that when s = o + it,

—k
vp 1 =k 1
1Og (1 - szrl) (1 - ps+1> - ps+1 + O (p20+2 :

Notice that v, = k for all large p, so the product for Gy/(s) converges absolutely
for o > —%. Therefore, we can move our path of integration to somewhere
slightly to the left of o = 0. Nevertheless, as in the proof of the prime number
theorem, we need to obtain upper bounds for Fy;(s) to determine the adequate
path of integration.

Upper bounds for Fy(s) According to (6.9), we realize that to get bound
Fy(s), we require information from (s + 1). According to the classical theory
of ¢-function, there is some ¢y > 0 such that in the region

o > —co/loglt], |t| > 4, (6.11)
¢(s + 1) has an analytic logarithm with the property
|log (s + 1) <loglog|t| + O(1).
Therefore, in the region described by (6.11), one has
[y (5)] < G () log" [ (6.12)

According to (6.9), the task is reduced to bounding the blue product. Set
0 = max(—o,0). Then

-1 kpd kpd
1(-20) <)l

plm plm

L el logm

1
< 4 .
<expl kW Z » log W

p<W

< exp(kW? loglog W + kWO-3 logm).
Therefore, under the choice W = log R, one has
|Gy (s)] < exp(2kW?° log log W), (6.13)
which, plugging into (6.12), implies
|Fr(s)] < (log |t])* exp(2kW? log log W)

is valid in the region (6.11).

Using this information, we continue the computation of (6.8).
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Deformation of the path of integration Since the integral in (6.8) involves
infinity, we introduce a truncation parameter 2 < T < R'00 to turn the path
into a line segment, giving us more flexibility.

By the bound (6.13), we know

/C+Oo - /CHT < zc F(log W) /OO _dt < . (log W)
o—i iT p thHil Tk+e
so setting ¢ = 1/log z suggests that the right-hand side is

< T % *(logz)*(log W)2*.

On the other hand, when §y = ¢p/logT and T = R, it follows from

—§o—iT e+iT | k
/ +/ < (log ) (log log R)?#(log R)%

and
do+1iT S0
/ < z7% (loglog R)*k(os )
—80—4T
that N
1 e s 1 s
—_ F ———ds = — F —d

+ O((log log R)*%).
Now, the remaining task is to compute the residue integral in (6.14).

Evaluation of the residue When s — 0, ((s+1) ~ s71, 50 Dy (s) = s*Fy(s)
is analytic near s = 0. Therefore, for some small r > 0, one has

1 z* Dy (0) ¢
(s )Sk+é+1 ds = 7 (log )

logx Yema 1 ds
Dy(s)—.
+ Z —q)! 2m,;{_r L(‘;)qurl

1<q<¢

i foe,

For the red integral, notice that when r = 1/log W, one has

d:
DU(s)sq% < (loglog R)**5* < (log R)°.
|s|=r
According to (6.10), we also have

Dy(0) =Gu(0) =] Vp,/p 11 <1 B Zf) (1 - 119> h

plm

p (6.15)

,H H o hU(m;H.

m
plm P pim P TP gu(
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Therefore, combining the equations between (6.14) and (6.15) with (6.8), we
deduce that

l
= ) L B O (10 ) s ooy, (610

Similarly, for 5,,, one has

hy (M)H (K + 0)!
(log R)k+¢ (£ 4 1)!

+1
Bm = p(m) (log :;) + O{(log R)*~*}. (6.17)

6.3 Asymptotic formulas for My, My

As before, we only give out the details for the computation of My from (6.16).
The reader can fill in the details for My by adapting a similar argument using
(6.17).

Plugging (6.16) into (6.2), we get

H? k+ 01 [ 1 R\ 2
My ~ (log R)2F+21 [( ‘; ) } (20)! Z p? (m)hy (m) @0 <1ogm> )

m<R
(6.18)
For the green part, it follows from (6.7) that for ¢ > 0, one has
R\ 1 petie R
Z u?(m)hy(m) (2[) <log m) =5 - IU(S)wdS, (6.19)

m<R

where Iy (s) is given by the Dirichlet series

9= 7M2(m¥?(m) =*s+1]] (1 + hl}’)@) <1 - pl+1>k (6.20)

m>1 p

By reasoning similar to that in the investigation of Gy (s), we conclude that
Ju(s) is absolutely convergent for o > —%. In addition, when s lies in the
region described by (6.11),

Iy (s) < (log [t))*]Ju (s)] = O{(log ])*}. (6.21)
Thus, when 2 < T < R ¢ =1/log R, and §y = co/log T, we can use (6.21)
to rewrite (6.19) into

1 c+ico RS 1 %C-‘riT
c

R*
— IU(s)st— Iy (s) gy ds + O{T~ (log R)*}

271'1 c—ico 27T'L 3T
1
— ds + O{T*(log R
= 501 B, o gmrds + O (og ')

—dg—1T —do+1iT c+iT
e Y B
c—iT —&o—1T —do+1iT
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By an argument similar to that in the treatments for «,,, the integrals in the

O-term are
< T~ (log R)* + R™%.
Hence, we can set logT = +/log R to conclude that
1 et R® 1 [ | R 0 JIogR
i Tuls) grrds = 5 /‘ Iu(s) s + Oe™ T VIRR). - (6.22)

2mi c—1i00
Now, set Ky(s) = s¥Iy(s), so Ky(s) is analytic near s = 0 and Ky (s)
Ky (0) 4+ O(]s|), allowing us to compute the brown integral as follows:
1 R’ 1 R’
I (S)st = Tm inJ’») KU(S)mdS

21 (0+)
Ky (0) 7{ R* 7{ |ds|
4540 (6.23)
|s]=1/log R 2kt |s|=1/log R |S|2€+k

211

_ KU(O) (logR)k:+2Z +O{(1OgR)k+2571}'

(k + 20)!

According to (6.20), we know
k
Kir(0) = 7(0) = [T+ o) (1- 1)
(6.24)

Finally, plugging the equations between (6.19) and (6.24) into (6.18), we see

that My satisfies

H [(k+¢
[ k+20)

112 (20)!
Mo~ fog)F | @ )} (( ) (6:25)

~(k,£)

Using a similar argument, My is asymptotic to
H 2(20+1)
My ~ k,?).
V™ g BFT @t ke 11y H )

(6.26)

We have now obtained all the asymptotic formulas required by the GPY sieve.

It is time to assemble them to study the prime gaps.
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6.4 The GPY theorem
Plugging (6.25) and (6.26) into (6.1), we have

N H~(k,?) 2%k(20 + 1)
" log N (log R)* {(2€+k+1)(£+ 1)

log R — log N} . (6.27)

. . 0_
In the previous article, we have set R = N27¢, so one has

G HAy(k0)
5 = NW{P(JM,&) ~14+0(@)},
in which
Pk, 0,0) 1= — P20+ D)

20+k+1)(t+1)
When ¢ = 0, we have

Kk
k+1
so plugging the k-dimensional sieve parameter into the GPY sieve does not help

us establish bounded gaps between primes. Consequently, the parameter ¢ in
the work of Goldston, Pintz, and Yildirim is indispensable.

Notice that
k(20 +1)
(20+k+1)(20+2)

20+ 1 1
_20(1_26+k+1> (1_2£+2>’

P(k,2,0) < th lim P(k,¢,0) = 26.

—00 k—00

P(k,0,0) = 26

so we have

According to the definition of limit, we know that when 6 > %, there exists k, ¢
such that P(k,¢,0) > 1, so S > 0 for large N. Therefore, we obtained the first
breakthrough concerning the bounded gaps between primes:

Theorem 6.1 (Goldston, Pintz, and Yildirim). If the primes have level of
distribution 6 > 1, then there exists some C(6) > 2 such that

lirr_1>inf(pn+1 —pn) < C(H).

6.5 Conclusion

In this article, we estimated «,y,, B, My, My via contour integration, thereby
obtaining the analytic form for the GPY sieve (6.27).

The original derivation of the GPY sieve in their paper [11] did not diagonalize
My, My, so the authors had to interact with double complex integrals. Al-
though Friedlander and Iwaniec diagonalized My, My in their book Opera de
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Cribro [10, §7.13], they did not specify Ay at the beginning but instead deter-
mined Ay from a choice of a,,, which is not intuitive. Therefore, the derivation
of the GPY sieve given in the present series is simpler than that of the original
paper and more motivating than that in Friedlander and Iwaniec’s book.

One may think the obstruction 6 > % is caused by the specific choice (6.6). In
the next article, we will derive the GPY sieve under a more general choice A4

Aa = p(d)P (ﬁi;éd)

to further explore the connection between the GPY sieve and the level of dis-
tribution 6. Please stay tuned for updates!

Aug 6, 2022
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7 Limitation of the GPY sieve

In the last three articles, we have constructed the GPY sieve

2

S = Z Z X[pr(n + hl) -1 Z Ad , (71)

N<n<2N \1<i<k d|lQ(n),d<R
and, by choosing A\gq to be the optimal parameter for the (k 4 ¢)-dimensional

Selberg sieve
log R/d e
= .2
A\ u(d)( o 7 ) , (7.2)

successfully established the existence of infinitely many pairs of primes with
bounded distance, provided that the primes are distributed at a level 6 > %

In this article, we consider a generalization of the GPY sieve by replacing (7.2)

with | R/d
_ 0g
M = p(d)P ( e ) , (7.3)

where P(x) is a real-valued, 1-bounded smooth function on [0,1] such that
P(1) =1 and P(x) = O(2*) as x — 0. This construction allows us to explore
further the relationship between the GPY sieve and the condition 6 > % The
first person to consider such a generalization is Kannan Soundararajan [20].
Because the main purpose of his paper was to survey the GPY sieve, he only
stated the result of plugging (7.3) into (7.1) without proof, so the present article

can serve as a supplement to his survey paper.

7.1 A generalized GPY sieve

In §5, we have converted (7.1) into a problem of inequality:
kMy (k,N,0) > My(k,N,0)logN VYN > Ny, (7.4)

where My and My are quadratic forms of Ay defined in (5.5) and (5.11).

In §6, we plugged (7.2) into My, My, which indicated that for each 6 > 1, we

can find k € N for which (7.4) holds. Thus, our subsequent task is to carry
out the computations in (6) with (7.3) instead. As a first step, we compute the
asymptotic formulas for au,, 8, defined in (6.3) and (6.4).

Remark. By Stone-Weierstrass, we assume P is a polynomial.

Asymptotic expansion of o, 3, By our assumptions on P(z), there exists
a sequence of finite support {ag}s>o such that

P(z) = Zagka, (7.5)

>0
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so by reusing the computations in §6.2, we have

(k+0)! (log R/m\"
m long Z 14 ( log R ) ’

£>0

Using the differentiation rules for power functions, the right-hand side becomes

hy(m)H log R/m
) o e P (SR (76)

and by similar reasoning,

By ~ u(m)Mp(kfl) (logR/m> ) (7.7)

(log R)k—1 log R

Asymptotic formulas for My, My Let {by}m>0 be a sequence of finite

support such that
PO @) =" bpa™ (7.8)

m>0

Then by combining (7.6) with the methods in §6.3, we deduce that
H m!
v (logR ) Z " (k—i—m)!

1)
long Z ™'T k:—i—m—l)

H L(k)(m—1)
(logR 'Z " k:-l—m Tk+m—1)

Finally, using the beta-gamma relation, one finds that

Lkl
My~ ot [ G P - o) (7.9)

Similarly, by using (7.7), we have

H 1 k=2 . )
M Togmy / (k — 2)![P(k "1 =)z (7.10)

With these asymptotic formulas ready, we move on to analyzing the implications
of (7.3) in number theory.
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7.2 Bounded gaps and integral inequality

Plugging (7.9), (7.10), and R = N2~ into (7.4), we see that (7.4) holds if and
only if

1 Ik72 1 .Z‘k71
/O G Pt e > 3/0 G P o)

Now, set Q(z) = P%~Y(z). Then Q(z) is a nonconstant polynomial with
Q(0) = 0. If Q is given, then P can be determined by repeated integrations.
Thus, the existence of P for which (7.4) holds under (7.3) is equivalent to the
existence of ) such that

e ) LR

The work of Goldston, Pintz, and Yildirim [11] indicates that when 6 > £, (7.11)

holds for some k under the choice Q(z) = Wwé , 80 an interesting question
would be whether there is a choice of P that allows (7.11) to hold for some &
and some 6 < % If the answer is affirmative, then we can deduce bounded gaps
directly from the unconditional Bombieri—Vinogradov theorem.

Unfortunately, 6 > 1 is a necessity to (7.11). In [20], Soundararajan wrote

“If we set Q(y) = P*~D(y), then Q is a polynomial, not identically zero, with
Q(0) = 0; for such polynomials @ we claim that the unfortunate inequality

1 k—2 4 1 k—1
/0 h@(l —x)%dzr < E/o h@’(l — x)%dz

”

holds. The reader can try her hand at proving this.

Now, we give a detailed proof of this inequality.

7.3 Proof of Soundararajan’s inequality

By definition of @), we know

QU —2)=Q(1—2)— Q(1 1) =/ Q'(1 - w)du,

so by Cauchy—Schwarz, we know for a > 1 that

1

Q1 —x)? < /I u®[Q'(1 — u)]*du /11 t~du

1— ml—a

11—«

_ /; W [Q (1 — w)2du
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Plugging this into the left-hand side of (7.11), we get

1—

[ eu- ot [ [

dxdu
-«

v, 1 U u®
:/0 ot 1[Q(17u)}2a—1 [k‘—ak‘—l]du'

F(u)
Therefore, the remaining task is to show that for u € [0,1],
4
F < —-.
O T
Maximum of F Differentiating gives
1 au®~1 ala — 1u*=2
—DF = - F = <0,
(o= DF (W) = =0~ 33 W= G DE-D

so F' attains its maximum at all zeros of F’. After case-by-case analysis, we
conclude that

F _{[a(kza)]l k>a+1,
TNk —a) (k=1 k<a+1.

Intuitively, this maximum is minimized when o and k — « are close to each
other. Plugging in o = %(k + 1), we have

k>a+1= Fpae =4/(k+1)(k—1) < 4/k(k — 1),
E<a+1=k=2= Fp,,=2=4/2(2-1).

Finally, using the continuity of F' and F'(0) = 0, we obtain the strict inequality

in Soundararajan’s paper:

Theorem 7.1 (Soundararajan, 2007). Let @ : [0,1] — R be nonconstant and
continuously differentiable such that Q(0) = 0. Then for k > 2,

- — 2dx 4 1$k—1 "1 — 2)2dz
| et ea —opar < s [ @0 - o

Combining this theorem with (7.11), we see that 6 > % is sufficient and necessary
for the GPY sieve to establish bounded gaps between primes.
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7.4 Conclusion

In this article, we generalized the GPY sieve by replacing the choice of Ay
with (7.3), thereby converting the prime gap problem into an inequality (7.11)
concerning Q(z) = P®*~Y(z). Finally, by differential calculus and Cauchy-
Schwarz inequality, we proved that 6 > % is a necessary and sufficient condition
for (7.11) to hold for some Q.

So far, we realize that the prototypical GPY sieve is incapable of demonstrating
bounded gaps between primes unconditionally. Our analysis also indicated two
directions to address this limitation:

1. Improving Bombieri—Vinogradov theorem: This is exactly how Yitang
Zhang [23] got liminf, . (Pri1 — pn) < 7 x 107.

2. Changing the structure of A\;: By making A\; depend on more variables,
James Maynard [14] obtained liminf,, o (pr+1 — Pn) < 600.

These two results will be expounded in subsequent articles. Please stay tuned
for updates!

Aug 28, 2022
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8 The 70 million bound of Zhang

Through the analysis of the previous article, we found that even if we replace
(7.2) with the more general (7.3), the propotypical GPY sieve is capable of
producing bounded gaps between primes only under the assumption 6 > % and
have also indicated two possible ways to address this limitation. Today, we
introduce the first approach that Yitang Zhang [23] took. He proved in 2014
that

Theorem 8.1 (Zhang, 2014). Denote by p,, the n’th prime. Then

liminf(ppy1 — pn) < 7 x 107, (8.1)

n—

8.1 Smoothed GPY sieve

In the prototypical GPY sieve, we only required A4 to vanish on d > R. Zhang,
building on this, required Ay = 0 when d has a large prime factor. Since an
integer free of prime factors > z is z-smooth, Zhang’s modified sieve is also
known as the smoothed GPY sieve. Now, let P(z) be the product of primes
< z. Then Zhang’s sieve can be written as

2

S = Z Z X]p(n + hl) -1 Z Ad , (82)

N<n<2N \1<i<k d|(P(2),Q(n))

in which h;, xp(n), Q(n) are defined in §4 and A4 still takes (7.2), the parameter
corresponding to the (k 4 ¢)-dimensional sieve. By computations in §5, we see
that when

o 12(d) ) L (2 9i(p)
g:i(d) = — EUH ). hi(d) “(d)mdl—gi(p)’ (83)

hi(m)
d<R/m m<R
d|P(z) m|P(z)
(d,m)=1
the sieve (8.2) can be rewritten into
N 27 3k
S=[1401)]—=(kMy — Mylog N) + O(R*log™" R) + O(&), (8.5)

log N

where

E= Y Y 3@ 3" |Ei(Nidc), (8.6)

1<i<k d<R? 1<e<d

d|P(2) Q(c—h;)=0(d)
(e, d)=1

39



Ei(N;d,c) = 221—-1/m du (8.7)

vz o Jy Togu
p=c(d)

To deduce (8.1) from the smoothed GPY sieve, Zhang showed that under the
smoothness condition, the range of Bombieri—Vinogradov theorem can be en-
larged.

Theorem 8.2 (Zhang). When @ = 1z, R = Nit® 2= N% (8.6) satisfies
£ < N(logN)=4.
Remark. Because the derivation of this result invokes deep results in algebraic

geometry with which the author is not familiar, the proof is omitted.

According to the blue term in (8.5), (8.1) will follow if one can find an appro-
priate k and A4 such that kMs > M log N. In the ordinary GPY sieve, we can
compute the asymptotic formulas for M; directly. Still, due to complications
coming from smoothness, we can only do the next best thing: finding an upper
bound for M; and a lower bound for M.

8.2 Preliminary treatments for M,

Define

ag(m)
s (8.8)

a;(m) = Z gi(md) A, Mi*zz )

d<R/m m<R
(d,m)=1

Then these are terms arising from the prototypical GPY sieve, so it follows from
computations in §6 that

hi(m)H — (k+0)! R\t
aim) ~ wm) o Ry (11— 1)) (1 ) : (8.9)
. Yk, OH . 2(2¢+1) v(k, ) H
M~ o M~ i DT oy T (8.10)

in which H and «(k, £) are defined in (6.15) and (6.25). Because M;* and M; have
very similar structures, it is reasonable that M; should be well approximated
by (8.10). Be definition of P(z) and the configuration in Theorem 8.2, we know

m > NY* Am|P(z) = d|P(z) = ai(m, z) = a;(m),

so one has the following decomposition:

IS VAR SNy ah%;u yoalm gy

hi(m) hi(m)
m<N1/4 m<N1/4 NY4cm<R
m|P(z) miP(z)
T
Toi T3,
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Therefore, to give an upper bound for (8.11), it suffices to estimate T1;, T5;, T5;
individually. We only give out details for the treatments in the i = 1 case. The
reader should be able to supply the details for the i = 2 case.

Remark. Since this article aims to emphasize the main idea, we have delib-
erately omitted the error terms arising from the asymptotic formulas. A full
justification is possible by adapting the methods in §6.

8.3 Estimates of TH, T21, T31
Plugging (8.9) into 771, we have

20
Ty ~ 2B OH” (k+20)1 hm) (o B) . (812)
(log R)?F20 (20)] WZNI (gm)

By Perron’s formula and standard properties of ((s), one has
k

5 )~ CEE Tl e mon (1-1) = 88 sy

m<zx P
Therefore, by partial summation, one obtains

5 o () 5 2

m<N1/4

o,

u=log z/log R

1 204k p(144w)!
— ( og R) (1 _ u)%uk—ldu

(k—1'H J,

(log R)?+k (0470

— u* " du.

(k—=1'H J,

Now, define
(14+4w)~ !
01 = k/ uF~tdu = (1 + 4w) 7%, (8.14)
0

so (8.12) becomes

Ty < [1+0(1)]6; (k + 2£> y(k,O)H

e ) fF (8.15)

For Ty, we first estimate a;(m, z). Let P’ be the product of primes in (z, R].
Then

ai(m,z) = Y gimd)Ana Y plg)

d<R/m al(@.P)
(m,d)=1
=Y ule) Y gima)Amg = Y plg)ou(mg).
q|P’ t<R/mq q<R/m
(£,ma)=1 qlP’
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When ¢ < R divides P’, it follows from
20 < g <R

that

locR 1/4
<og :/+w

= 293,
log 2z

so we have

Now, by (8.9), we know

H  (k+0) R\*
‘al(maz)‘ ~ (IOgR)kH'é /! Z hl(mq) (log ’fTLq) .

Since m|P(z), m and q are coprime, so hy(mgq) = hi1(m)gi(q). Combining this
with (8.16), we deduce that

l
s(m,2)] ~ ACH (k4 0) Y @ <logR>

(log R)k+¢ 2! Syl mq
P’
ha(m)H (k+ 0)! R\"
< — .
S LT AT
q<R
alP’

For the green term, it follows from w(q) < 292 that

Yo=Y Yaws ¥ o X ok

<R 0<v<292 ¢[P’ 0<v<292  \z<p<R
q| P’ w(q)=v
v
1 k (klog293)Y
<Y ST i)~y BB
0<v<292 2<v<R 0<v<292

Comparing this to (8.9), we conclude that
|ai(m, 2)| < [o1 + o(1)]evs (m).

Plugging this into 751, we get

g S~ 0dm) o k2 (k. OH
Tl 3 S <+ i (") AL sy
Th1
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For T31, plugging (8.9) in gives

~(k, O)H? (k + 20)!
~ (log R)?*  (20)! m;? ha(m (8.19)

mtP(z)

For the purple part, because m t P(z) = (m, P’) > 1, it is bounded by

Z hi(m) < Zhl(m) Z 1= Z Zhl(m

m<R m<R p|(m,P’) z<p<Rm<R
miP(z) plm
= > ) X m
z<p<R t<N1/4

(t.p)=1

For large prime p, h1(p) < %Lk ~k

b 5O combining with (8.13), one has

81k log 293 (log R)*
E hi(m) <1+ o(1)]klog 293 E hi(t) ~ o T
m<R t<N1/4
mtP(z)

Finally, plugging this into (8.19) gives

(8.20)

Ty < [1+ o(1)]k log 203 (k * 2€> W

k log R)k

Having estimated 111,751,131, it is time to synthesize these results to produce
an upper bound for Mj.

8.4 Bounds for M; and M,
Plugging (8.15), (8.18), and (8.20) into (8.11), we realize that under

E+20
m:51(1+5§+klog293)< Z ) (8.21)

we have
v(k, 0)H

My <1+ k1 + 00)]@

= M. (8.22)

By an argument similar to that in §8.3, we can obtain upper bounds for T12, Tos, T30
to obtain a lower bound for Ms. That is, under

k42041
@—51(1+4w)(1+5§+klog293)( ;_j ) (8.23)
we have 1 2020+ 1)log R
My > [1 o)) L=rz 220+ DIog R, (8.24)

T+r (20+E+1)(E+1) Y

43



8.5 Bounded gaps between primes

Now, let’s see where the number 7 x 107 comes from.

According to (8.22) and (8.24), we see that the blue term in (8.5) satisfies
kMy — Mylog N > [s — 1+ o(1)]M] log N,

where
1—ro k(20+1)(1+4w)
s= .
1+ k1 (20+k+1)(2042)
Hence, we can win by choosing k, ¢ that makes s > 1. By Stirling’s approxima-
tion, Zhang showed that when

(8.25)

1

k=3.5x10° (=180, =—,
’ “ 71168
one has 0 < k1 < 71299 0 < Ky < €?%K1, so by numerical computation,

— Ky _—1980

1
x 1.0005 > 1

+,‘£1

According to the scheme in §4, the remaining task is to find an admissible tuple
H = {hi,ha,..., ht} of size k = 3.5 x 10° so that

o e o .
lim inf (p,+1 pn),lgr?g?%kIhz h| (8.26)

Admissible tuple of size k& Let hy < hy--- < hy be primes > k. Then for
p >k, v, <deg@ =k < p. Because

p<k=Q0)=hihy---hy Z0 (mod p),

we see that v, < p for p < k as well. Hence, = {hi,..., h} is admissible.

This reasoning tells us that when V' > k is a number satisfying
W(V) - W(k)v
we can choose hi,...,h such that

max |hi—hj|:hk—h1 <V
1<i<j<k

Because it is inefficient to count the number of primes directly, we invoke a
quantitative form of the prime number theorem due to Rosser and Schoenfeld
[17, p. 69]: for x > 60,

° <7(z) < T (14 2
log = log = logz )
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As a result, when V =7 x 107, one has

LT 107 3.5 x 106
7log10+log7 6log10+ log3.5

2
1 -
X ( + 61og10+log3.5>
>3.8x10%—-24x10°x1.2
>3.5x10% = k.

(V) — (k)

Finally, combining this with (8.26) and (8.5), we obtain Theorem 8.1.

8.6 Conclusion

In this article, we made unconditional the result of Goldston, Pintz, and Yildirim
by smoothing the GPY sieve. Although we did not obtain asymptotic formulas
for My and M, under the smoothness assumption, we obtained a nice upper
bound for M; and a lower bound for My by relating them to the corresponding
terms M7, M5 in the unsmoothed sieve. Finally, we determined a possible k for
s > 1 to hold, and by numerical computation with the Rosser—Schoenfeld prime
number theorem, we deduce the inequality (8.1).

Although Zhang’s paper appeared in publication in 2014, it had already shocked
the mathematical community in April 2013. However, if Zhang were late for a
few more months, his name would not be as well-known as today. Because in
November 2013, James Maynard announced something much stronger:

lim inf (pp+1 — pn) < 600. (8.27)
n—roo

According to his paper [14], Maynard began his investigation into prime gaps
before Zhang’s announcement of (8.1) and used an entirely different approach.
By replacing Aq with Ag, 4,,....4, that takes in vectors, Maynard deduced his
bound (8.27) via only the Bombieri-Vinogradov theorem (§ = 1). His methods
will be expounded in the subsequent articles.

Sept 7, 2022
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9 DMaynard’s dimensional reduction strike I

After Yitang Zhang, many mathematicians became interested in the problem of
prime gaps. In the autumn of 2013, the Polymath8 project initiated by Terence
Tao and others improved Zhang’s 70 million bound to

lim inf(py4+1 — pn) < 4680. (9.1

n—

In November of the same year, by making structural refinements to the GPY
sieve, James Maynard [14] replaced the right-hand side of (9.1) with 600. In
addition, he showed that there exists some fixed C' > 0 such that for all m € N,

lm inf (ppim — pn) < Cm3et™.
n—o0

Zhang obtained his 70 million bound by showing that the primes are equidis-
tributed in arithmetic progressions with smooth moduli at the level of § =
% + ﬁ. In contrast, Maynard’s 600 bound is only a consequence of the classical
Bombieri-Vinogradov theorem (i.e. § = § for all moduli). This is because the
latter took the second route indicated in §7.4. Now, we will see how Maynard
achieved this refinement.

9.1 GPY sieve and the dimensional reduction strike

In the study of Goldston—Pintz—Yildirnm and Zhang, the GPY sieve took the

form of
S=>"1 > xe(n+hm)—p (Z )\d> , (9.2)

nel \1<m<k deD,
w
where I is some interval of integers, Ay is the Selberg sieve parameter for the
(k + ¢)-dimensional sieve, and p = 1. The original sieve problem is naturally
a k-dimensional problem, so the heart of the GPY-Zhang approach is to first
convert a low-dimensional problem to a high-dimensional version and then solve
the problem via a higher-dimensional sieve, which we call the “dimensional
increment strike.” On the contrary, Maynard’s idea is more like a “dimensional
reduction strike”:! He replaced w,, in (9.2) with

Wo = > Ay (9.3)

allowing us to divide a conquer a k-dimensional sieve problem by k one-dimensional
sieves. It is this reason that allows Maynard to deduce bounded gaps between
primes without the knowledge beyond Bombieri—Vinogradov.

IThese terms are borrowed from the science fiction Three-Body Problem by Cixin Liu.
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Remark. In the GPY-Zhang sieve, we required Ay to vanish when d > R or
d is not squarefree, so we impose a similar constraint for the new parameter in
(9.3): i.e. Ag,,...a, vanishes when dids - - - dj, is not squarefree or dids - - - d, > R.

9.2 Construction of the dimensional reduction sieve
Combining (9.2) with (9.3), we realize that to obtain asymptotics for S, it
suffices to compute Sy, Sém):

S1=>w? S5 =3 xe(n+ hpn)wl. (9.4)

nel nel

In the GPY—Zhang sieve, I = (N,2N], but in Maynard’s version, for technical
convenience, we want each n € I to have the property that n + h,, is free of
small prime factors. Specifically, we want n to satisfy

Dy =logloglogN, W= [[ p, (n+hmW)=1 Vnel Vm. (9.5)

p<Do

Remark. We leave Dy unspecified until we compute the main term of Sém).

Because we also require H = {hi,...,hx} to be admissible, for each p < Dy
there is some 0 < a;,, < p such that
Qap) = (ap+h1)---(ap+h) Z0 (mod p) Vp < Dy. (9.6)

By the Chinese remainder theorem, there is some 0 < vy < W such that
vg=ap, (modp) Vp< Dy,
SO we set
I={ne(N,2N]:n=vy (mod W)}

in (9.4) to perform subsequent computations.

9.3 Preliminary treatments for S,

In analytic number theory, miracles happen after interchanging the order of
summation. To transform S into an approachable form, we expand w2, so

Sl = Z/ )\dl,...,dk)\eh...,ek Z 17 (97)

di,...,dg N<n<2N
€1,..,€k n=vo (W)

in which 3’ sums over terms under the additional requirement that [dy, e1], ..., [dk, ex], W
are pairwise coprime. This is because the blue term will otherwise vanish. From
the coprimality condition, we can use the Chinese remainder theorem to deter-
mine a unique 0 < vy < W/[dy, e1]- - - [dg, €] such that the range of the blue sum
is equivalent to
n=wv; (mod Wldy,e1]---[dk,ex]),
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allowing us to convert (9.7) into

N g dpeq....e
S — E 1y--50k 15--5€k +E . 98
' d d [dhel]"'[dk:ek] ! ( )
1050k
€1,...,€L

Q1

In particular, if [Ag,.. d.| < Amae and 7 (n) is the number of ways to write n
as a product of k integers, then the error term FE; satisfies

2

B < X | S #2(@mld) | < X2, R (log R), (9.9)
d<R2

so our remaining task is to transform the quadratic form @; in (9.8).

9.4 Transformation of ();

Although our “dimensional reduction” sieve is very different from the original
Selberg sieve, we still hope to handle the gigantic term in (9.8). By [a, b](a,b) =
ab and the convolution properties of ¢(n), one has

A e
Z M(dhel) (dy, ex)

dre
e k€1 €k

€1,.- 7ek

Ay Moy
zkdh N

dy, U1,k 1<i<k
e1yeesel wil|(di,e:)Vi
DN A
du,...d en
E H(p uz E W. (9.10)
DRI e ... e
Ltun d dysde 1 k€1 k
€1,..,6k
u1|(d eI)Vz

We have required earlier that Ay, . 4, to vanish when d;ds ... d} is squarefree,
which is equivalent to saying d, ..., d; are individually squarefree and pairwise
coprime, so the additional constraints in Z/ are equivalent to (d;,e;) = 1 for
all ¢ # j. Therefore, it follows from M&bius inversion that

/

o= > > IT #Gsiz)

dy,...,dy dy,...,dg 31,|27""5k,k—1 1<i,j<k
€1,..-,€k €1,--€k 54 5|(di,e;)Vity iFj
1LL|(d,,eL)Vz w;|(di,e;)Vi

> T w(siy) > . (9.11)

S1,2, 8k, k—1 1<4,5 <k dy,...,dg
i#£] €1,..5€k
uL\(d“eL)Vz
si,jl(di,e)Vi]
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Plugging this into (9.10), we get

A A
@= 3 Jletw ¥ Tl 3 ghgless

..... Uk i 51,2 35Sk, k—1 ’I,j dl,...,dk
i#£] €1,..-,€k
ui|(di,ei)Vz

si,51(di.ej)Vi£]

A )\6 N
O | ECONED N | TN S e,

€L
ULy Uk @ (51 2"")7Skk 1 i, diy..d K
si,5,W)=1Vi#£j i#£j €1,..,6k
’ ailds byeiVi

(9.12)

in which a; = u; [[ i s;; and b; = u; H;é 8. To prevent (9.12) from becom-
i 7]

ing more formidable, we make some simplifications in the red sum.

Diagonalization and the parameter y,, . Define

T

..... Z Adl’ k. (9.13)

7"1 |d Vz
Then by Mébius inversion, one has

>\d1, dp Z HM( )Oérl,“.,rk

T15e0Tk g
d;i|riVi

=Hu(di> > utdar .

T1y..3Tk 1
dllT,V’L

Building on (9.13), we introduce an extra definition for the sake of cleanliness:

Yry,oore = p(r)e(ry) - :U(Tk)‘ﬂ(rk)am,...,rka

so we have \
di,....dr
yTh.. e T H,u rz Tz Z d . -dk (914)
dy,oode L k
T1|d1VZ
and [
Ay, .. Hdzu Z (9.15)
T1,-- ,Tk
d;|r;Vi

Remark. From (9.14), we see that y,, ., vanishes when 77y 1) exceeds
R, has square factor, or not coprime to W. Additionally, we see that redefining
Ady.....d, Dy (9.15) with the aforementioned constraints on the support of y,, ..,
also ensures the support of Ay, .. 4, to fulfilled the conditions mentioned in an
earlier remark.
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Now, plugging (9.14) into (9.12) gives

Z HN ) Z H 'u yal,....akybl

ULy U 1 81,258k, k—1 4,5
(51 JvW) 1Vi#j l;é]

(9.16)

According to (9.5), the condition (s;;, W) = 1 implies either s, ; = 1 or s;; >
Dy. Let Q] be the subcollection of terms in ¢}y with s; ; > Dg. Then by (9.16),

we know when |y,,. . .| < Ymaz, One always has

F k(k—1)—1
1% (w) 1%(s) 12(s)
Q) < Yras
1 2 e | (& 2 ol)
(u,W)=1
k 2 k k
2 @(W) 1 yma;v‘)o (W) (log R)
AV -
< Ymaz ( W 0g R) DO < WkDO
Therefore, (9.16) is reduced to
B Y R R

ULy, Uk

Now is the time to assemble all the results we obtained thus far

9.5 Asymptotic formula for S;

(9.15), we can express Ajqq in terms of yp,aq

By
d; 1%
)\ma;E max
<Y 1:[ o(d;) Z H
L t <R/H d;
(ti,di)=1

(tit;)=1Vi£j
127 ()7 (t)

= Yrmas H (1+pi1> Z o(t)

PI T di t<R/T1, ds
(¢, H di)=1
t
S Ymas D ” Z =
r| 1, di t<R/r
(t T)
< Ymaz Z /1' << Ymazx (log R)
u<R

Plugging this into (9.9), we have
Yimae N " (W) (log R)*
By < y2..R*(log R)* <« WED,
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Combining this with (9.8) and (9.17), we obtain

N Z/g U y2 N(Pk(W) (log R)k
= 1 1oeee ke mazx N
oW Zuk IT; e(us) +O{ WEH1 D, ; (9.18)
T

which is precisely the formula in [14, Lemma 5.1]:

Let
k

Ady,...\d
Ursme = ([ () 30 St
i=1 iy 1Lz ds
m\d1Vz

Let Ymaz = SUDry g |yr1w-~7rk|' Then

S

N o 2 2p(W)FN (log R)*
= W Z yklv---v k + O<y7na1,80§/[/k)+1D( Og ) )
T1yeuny Tk Hi:l SO(TZ) 0

9.6 Preliminary treatments for Sém)

In the GPY—Zhang sieve, the treatments for the corresponding S; and Sém) are
very similar, so we skipped the derivation for ng) in §6 and §8. However, in
Maynard’s “dimensional reduction” sieve, the difference between the treatments
for S7 and ng) is worth an expanded account. According to Dirichlet’s theorem,
an arithmetic progression contains infinitely many primes if and only if the
first term is coprime to the common difference, so interchanging the order of
summation in (9.4) gives

/
Sém) = Z Adl ..... dk Ael,...,ek Z X]P(/IL + h"n)' (9'19)
di,...,dg N<n<2N
€1,..,ek n=vo (W)
dm=em=1 [di,ei]|(n+hi)Vi

To continue expanding the green part, we invoke the prime number theorem on
arithmetic progressions, so when we define

2N
E(N,q) =1+ max Z XP(H)*L\/ du

(@a=1|y =y e(q) Jx logul|’
(a,q)=1
one has
1 N du " Ay d A
S = / DuntiZennte 0 y), (9.20)
? e(W) Jn logu dl;dk [T ¢([di, es])
€1,...,€k
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in which under EH () for £ <6 <1 and R = N2—¢, B, satisfies

N
B 2 2%k 2 M. 21
2 € Yrar(log R) d<§R2 e (d)13(d)E(N,d) < a (log N)A (9.21)

Thus, it remains to handle Qém).

9.7 Diagonalization of Q.
Let g(u) be the multiplicative function satisfying

(m)=>g(u) = g(p) =p—2.

ulm

Then by reasoning in the computation of (9.11) and (9.11), we have

SN | EORED DR | VORI D TS e A

SUE g $1,25--5k,k—1 4,5 dyi,....d
R (507 W) =1Victj isk €1 ek
dm=em=1

ai|di,bi|eiVi
(9.22)
in which a; and b; are defined as in §9.4.

By the Euler product formula for multiplicative functions,

“2((7:3 <11 <1+) <11 <1+)1exp Z}%

n<z p<z p<x p<z
(n,q)=1 pla plg
p— p—1 p(p—2
< H logx = H H )2) log x
p<1 p<z p<.L
rlg plg
»(q)
< ( ) logx = log x.
11 y

" Ad7 ,d
y£1j~)~>rk H p(ri)g(rs) Z ! k (9.23)
1
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we see that the subcollection Q/Q(m) of terms in ng) with s; ; # 1 satisfies

S k(k—1)—1

2 2 2ot

m p (u) p=(s) p=(s")
Q5™ < (y),)?

RN 2 |\ &) A

(u,W)=1
k-1 (m) \2, k—1 k—1
(m) \2 SD(W)l R L (ymax) "2} (W)(IOgR)
< (Ymaz) (W 0g o < 1D, :

Combining this with (9.22) and (9.23), we deduce that

(m) 2 (m) \2 k-1 k-1
yul,...,u . Ymax W log R
2 W*O{( S, } 924

Um =1

Q™ =

9.8 Asymptotic formula for S{™

By an easy integration by parts, one has

N du N N
= tO( =5+
Ny logu logN log™ N

and by (9.5), we know 1/log N < 1/Dg. Additionally, because

k—1
3 W) o W) | i)W (log R)F
w2 Tty Wm0 2 T Wi
Um=1 (u,W)=1
we see that (9.20) becomes
gm_ N W)
2 e(W)log N, &=, T, g(ui)
™
(yina*Nig" (W) (log N)*2 YV
@) O mat . 9.25
’ { W=Dy O gt N (92
This is exactly the formula in [14, Lemma 5.2]:
Let
: Ady, ... d
(m) — H . . 9@k
yr N M(rl)g(rl) Z k ’
ot (z'=1 ) dy,...,dy [Tiz: »(di)
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where g is the totally multiplicative function defined on primes by g(p) = p — 2.
Let yi), = SUp,, |y7(fln)rk| Then for any fixzed A > 0, we have

s N )
o(W)log N T g(r)

T1seens

(ysnak )0 (W)F2 N (log N)*~2 YVraaN
+0( Wh-1D, )+O((logN)A)

Remark. In Maynard’s original paper, the condition w,, = 1 is dropped, but
this does not make any difference because from (9.23) it is clear that y(m) "

vanishes when u,, # 1.

9.9 Asymptotic formula for y{™ ,,

In the GPY sieve, we obtained asymptotics by first specifying A and then
computing the corresponding y and y(™). However, when we were deriving
Soundararajan’s generalized GPY sieve in §7, we found that expressing A and
y™) in terms of y could save us a lot of energy, so we combine (9.15) and (9.23)

(m)

to express yr,, ...r, in terms of ¥, ., , yielding

[ dy,..., dy 1
dpm=1 d |a Vz
r;|d; Vi
Yay,...,ax :u
= [T utrogtr) > T Z (9.26)
7 A1 yeee Ak 590 dy,...,dg

Using the properties of multiplicative functions, we know

wd)d _ plryr HOE _ plr)r __r
2@ T e 2 e e (%)

rldla (t,r)=1 Z‘Jf-
_ plr)r I p(p) _ p(r)rp(a)/e(a) _ pa)r
o(r) =1 ) ur)/e(r)  ela)

Plugging this into (9.26), we get

) e = [T nri)g(r:) Z o G H . (9.27)
i

a1,...50k 1 i#m a;)
ria; Vi

Remark. We assume r,, = 1 throughout the section.
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By (9.14) and our constraints on the support of Ay, ... 4, , we know (9.27) is sup-
ported on (r;, W) = 1. In addition, the nonzero contribution in the sum comes
from a; satisfying (a;, W) = 1, so if a; # r;, then a; > Dyr;. Consequently, the

subcollection of terms with a; # r;Vj # m in g™ satisfies

< Ymax Hg(rz)rz Z am H Z ,u al u(

am <R z;ﬁj a; <R a;>Dor;
(U«m,W)fl (U«HV‘V) 1 TJ\aJ
rilai

2(p. 2(u r; 2(u
<<ymaz%10gRHg(m)riHN ( zg Z w2 ( 2# J Z w2 ( g

i Pr)? ) () Sp ()
(u,Wr;)=1
<L Ymax | I 80(7'1') WD, < Do .

Combining this with (9.27), we deduce that

m) T 90§ Yt e (ymaxcp(W) log R)
i = 1000 2 #an) Dy

7 Ao

(9.28)
Define 3(n) = ng(n)/¢(n)?. Then for a large prime p,

== () ()=o)

so it follows from (7’11"2 <1, W) =1 that

A I o)) -0 )

p>Do

Additionally, because

Z Yri, ot —1,0m Tt 15Tk < Ymaz Z ﬂ2(am) < ymax‘ﬂ(W) IOgR,

e(am) A an<R o(am) W
(am,W):l

we see that (9.28) becomes

(m) _ Yri e P —1,@m Pt 15e- o, Th 0 ymam‘P(W) log R 9.99
y7"1 3Tk Z Qﬁ(am) + ( DO Y ( . )

which is precisely [14, Lemma 5.3]:
If rp, =1 then

(m) N Y TG 1T O(ymamcp(W)logR)
Tk Z o(am) + W Dq '

.....
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We have now expressed Maynard’s sieve in terms of y,, . .. To continue, we

need to specify y,, ..., so that 77 and TQ(m) become analytic expressions.

k

9.10 Analytic expressions for 77, TQ(m)

Similar to how we picked Ay in §7, we let F : [0,1]* — R be smooth and
vanishing if 1 +---+x, > 1. When rirg - - - ri is squarefree and corpime to W,
define y,,

,,,,,

log ry log 7,
L =F , 9.30
Yraseomn (logR log R (9-30)

so T in (9.18) becomes
2
w?(u;) o (logug log u,
T = E I | F . 9.31
' ULseoy Uk 3 w(ui) (IOgR 7 ’ IOgR ( )

(ui ,W):l
(wiyug)=1Vij

To continue the analyses of (9.31) and TQ(m), we require a general result that
can easily produce asymptotic formulas.

An asymptotic lemma Let h(n) be a multiplicative function satisfying the
following asymptotic conditions for primes:

> h(p)logp =logz + O(L), > h*(p)logp < oo (9.32)

p<z

Then we are interested in the sum

H(z)= Z p?(n)h(n). (9.33)
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Similar to how Chebyshev originally studied primes, we attach a logarithmic
weight:

(@)= 3 1i2(n)h(n) logn = 3 logp 3 12(n)h(n)

n<x p<z 7;)‘%13:
= h(p)logp Y p’(t)h(t)
p<z t<z/p
pit
=Y hp)logp > w*)h(t) =Y h(p)logp D u*(m)h(m)
p<z t<z/p p<z t<z/p
plt
=> h(p)logp > w’(th(t) =D h*(p)logp > p*(m)h(m)
p<= t<z/p p<= m<z/p*
ptm

= pA(th(t) Y h(p)logp + O{H(x)}

t<z p<z/t
= > 1 ()h(t) {log T + O(L) } + O H ()}

= H(z)logx — I(z) + O{LH(z)}.
Therefore, we obtain
() = 3 H(x)log + O{LH(x)},
which indicates that

Ii(z) = /196 H(t)% = Z 12 (n)h(n) log% = %H(x) logz+O{LH(x)}, (9.34)

n<lx

ey =2 o (L)), o9

Differentiating the left-hand side of (9.34) gives

I 2 ( L )
—(x) = +0 .
11( ) xloga: xlogzx

Integrating, we see that there is some C' > 0 such that

so we have

1
Ii(z) = iCl’log2 x+ O(LClogz),

and combining this with (9.35) gives

H(z) = Clogz + O(LC). (9.36)
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To determine C, we study the properties of the Dirichlet series F'(s) associated
with g?(n)h(n). By the Euler product formula, as s — 0T, one has

Fo=T1(52) () ()

(1) <1—p:+1><l+1>
§H1+h —p .
- S

By partial summation on (9.32), it is easily verified that the product & con-
verges. On the other hand, by the integral formula relating F(s) and H(z), we

know |
> ogt _
ts+1 C/ s+1

H(z) =6logx + O(SL). (9.37)
In the study of 717, TQ(m)7 we need to study sums of the form

=" 12 (n)h(n)G GZiZ) '

n<zx

F(s)=s

0 (9.36) becomes

Applying partial summation and plugging in (9.37), we get

Ho(z) = /1 e (11;)5;) dH (1) = /0 G

~ Glogz /0 G(w)du + /0 G(u)dO(LS).

Performing integration by parts on the remaining component, we deduce the
result:

Lemma 9.1 (Asymptotic lemma). If h(n) is a multiplicative function satisfying
(9.32) and G : [0,1] — C is continuously differentiable, then

3" 12 (m)h(n)G (log”) —Gloga /O1 G(uw)du + O{LEG s},

= log

where

Gmar = max |G(z)| + max |G’ (x)|
0<z<1 0<z<1

and

S =[[0+nrE)1-p).
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Remark. Our proof is adapted from [10, §A.2]

We are now in a position to determine the analytic expressions for T and TQ(m)

Transformation of 77 To apply the asymptotic lemma, we first define

oF
Frae = max |F(ty,....t)| + E max [—(t1,...,tx)|- (9.38)
Tyeees Lisess x| Ot;
1<m<k
Because (u;, W) = 1Vi, dropping the pairwise coprime condition (u;,u;) =

1Vi # j in (9.31) creates an error of

9 1
<<Fmamz Z HL<< maazm Z ‘u

p>Dg UL,..- Uk p>Dg u<R
(ui,W)=1Vi (u, W)=
pl(wi,ug)3i,jAi#]
k

< Fmax Z :uQ (u) < F%ax@(w)k(log R)k )
u<R p(u) W¥Do

lo
LK o8P < loglog W < log Dy.

p|W

Moreover, because & = p(W)/W, it follows from the asymptotic lemma and
the error estimates above that

*(log R)*
7, = $W)"(log R)* Og / / F2(ty, ... ty)dt - - dty,

I (F)
1 0 FhastWM kMg Do FaelW) o 1

Wk WEDg

Combining this with (9.5) and (9.18), one obtains an analytic expression for Sy:

POV N(og R | ) o f Flawe(W)*Nog R)!
WhHL k WD, :

This completes the proof of [14, Lemma 6.2]:

S1 =

(9.39)
Let yr,,.r, be given in terms of a smooth function F by [(9.30)/, with F
supported on Ry = {(x1,...,zx) € [0,1]% : 21;1 x; <1}. Let

Fras = sup |F(ty,... t)] + | tl..., r)|-
" (t1,..,tx)€[0,1]F ’ Z ’
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Then we have

S = “O(W>’;V]\,:(+lfg B pr) + of

Fpaap(W)* N (log R)*
WD, )

/ /Ftl,..., Yt .. dty

Transformation of T( ™) To compute T( ™) , we first determine yT(=1 ™) re- AD-

.....

plying the asymptotic lemma to (9.28), we see that when r,, = 1, one has

where

(m) _ o(r;) log 1 log 1k
Yryiorm — H / (logR N TR log R dt.,
B
Frazp(W)log R
(@] .
+ ( W Dq

Plugging this into T2m) of (9.25), we have

(m) _ ¢(W)*(log R)* H 12 () (i) om
T2 - W2 Z ) 151,')“711;‘» (940)
Uy U
Ui =1
(us ,W)=1V1

(uiyuj)=1Vi#j

0 f Frap(W)F+ (log R)+!
+ Wk+1D0 !

Similar to our computations in T}, we see that we can drop (u;,u;) = 1Vi # j
at the expense of

k—1
< Finaap(W)*(log R)? > o(p)* > 12 (w)p(u)?
2 2,4 2
w Lo 9t | o glwu
(u,W)=1
Fybap(W)*+! (log R)*!
< Wk+1D0 :
Therefore, applying the asymptotic lemma to (9.40) gives
(m) _ p(W)**(log R)*1 Fpaep(W)* 1 (log R)*!
7™ = T J(F) + O D, . (9.41)
in which
1 1 1 2
)(F) :/ / (/ F(tl,...,tk)dtm) Aty - - - Abyy— 1 Aty - - - .
0 o \Jo
(9.42)
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Plugging these into (9.25), we get

e(W)*N(log R)*** () F2 . (W)FN(log N)*
WEH log N Jy (F)+0 WD, . (9.43)

This completes the proof of [14, Lemma 6.3]:

S =

Let Yy, ... ris F and Fraq be as described in [14, Lemma 6.2] Then we have

@(W)"N(log R)*+! F2 .0 (W)FN(log R)’“)
Wktllog N Wkt Dgy ’

/ / /Ftl,... )dt )dtl...dtm,ldtmﬂ...dtk.

In addition, plugging (9.30) into (9.15), we get an expression of Ay, .. 4,:

w11, ri)? (logr1 10g7“k>
Ad; d F e, .
diye-rd H it(di) 71Z;k IL ¢(rs) log R log R
d;|riVi
(ri ,W)=1V1

s =

T (F) + o(

where

This explains why [14, Proposition 4.1] has such a formidable appearance:

Let the primes have exponent of distribution 8 > 0, and let R = N%/2=9 for
some small fired § > 0. Let Ay, .. 4, be defined in terms of a fized smooth
function F by

Adyeodie = (ﬁ u(dl)d») Z M(Hf:l Ti)QF (108?7“1 logrk>
1yeees - 1) Wi % e ,
' i=1 e LLieq (i) log R log R
di|riVi
(ri, W)=1Vi

whenever (Hf:1 di,W) =1, and let \g, .. 4, =0 otherwise. Moreover, let F' be

supported on Ry, = {(x1,...,21) € [0,1]* ZZ 1 x; < 1}. Then we have
(1+ 0(1)) (W)EN (log R)
Sl = Wkt1 (F)a
_ (L4 o)p(W)*N(log ) )
S2 = Whtllog N Z Tk

provided I,(F) # 0 and J(m) (F) # 0 for each m, where

/ /Ftl,..., V2dty ... dty,

2
JM(F / /</ tl,...,tk)dtm> dty ... dtym_1dtmer ... dts.

Having converted everything into analytic expressions, we investigate the lower
bound of (9.2).
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9.11 Maynard’s variational problem

Plugging (9.39) and (9.43) into (9.2), we get

S:

k+1 o k o
(W) +vé\f£(1 g R) (fogf}zu’ém)(ﬂ—pfk(F)+o(1)>.

Let Sy, be the space of continuously differentiable functions F : [0,1]F — R*
supported on t; + - - - 4+t < 1. Then defining

S I (E)
M, — emk 7 9.44
we have b1 &
W N(log R 0
s> W) Wk( R () {2Mk —p+ 0(6)}- (9.45)

Therefore, S > 0 will follow from My /2 > p. Combining this with (9.2), S > 0
implies there exists infinitely many n for which at least | p+ 1| members among
n+ h1,...,n+ hg are primes. This proves [14, Proposition 4.2]:

Let the primes have a level of distribution 6 > 0. Let § > 0 and H =
{h1,...,hi} be an admissible set. Let I,(F) and J,Em) (F) be given as in [14,
Proposition 4.1], and let Sy, denote the set of [continuously differentiable] func-
tions F : [0,1]* — R supported on Ry = {(21,...,2x) € [0,1]F : Zle x; <1}
with I,(F) # 0 and Jém)(F) # 0 for each m. Let

k (m)

_J (F oM,

My, = sup 2m=t%e () no= [0
FeSy I (F) 2

Then there are infinitely many integers n such that at least v, of the n+h; (1 <

i < k) are prime. In particular, iminf, (pp4r,—1 —Pn) < maxi<; j<i(hi — hj).

So far, we have completed a full derivation of the arithmetic aspect of Maynard’s
work. From (9.45), we see that the problem of small gaps between primes is a
matter of optimizing the functional My = My (F). If we can find k such that
My >4 =2/(1/2), then we will deduce bounded gaps between primes by only
invoking the Bombieri—Vinogradov theorem.

9.12 Conclusion

In this article, we applied a variety of techniques from number theory and ob-
tained an analytic expression for Maynard’s “dimensional reduction” sieve, even-
tually converting a problem of prime number theory into a variational problem.
In the next article, we will introduce Maynard’s solution to this variational
problem. Please stay tuned for updates!

Oct 17, 2022
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10 Maynard’s dimensional reduction strike 11

In the last article, we converted the problem of prime gap into a variational
problem. Define

]k:/.../ F2(ty,... ty)dty - - - diy, (10.1)
[0,1]k
and
1 2
Jm = // </ F(t,.. .,tk)dtm) [T at. (10.2)
[0,1]*=1 \JO 1<i<k
i#m
Then we want to find F' = F}, supported on t; + - -+ + t; < 1 such that
J(m)
My, = 7219”;’“ k (10.3)
k

attains its maximum. Specifically, when 6 is the level of distribution of primes,
there exists C > 2 such that there are infinitely many n’s such that the interval
[n,n + Cj] contains ry = [0M},/2] primes. Therefore, the analytic properties of
(10.3) have significant consequences in number theory. In this article, we follow
Maynard’s steps to attack this variational problem, thereby proving his main
results:

Theorem 10.1. liminf, oo (Pnim — Pn) < Cm3e*™ for some absolute C > 0
and all m € N.

Theorem 10.2. liminf,, o (prt1 — pn) < 600.

10.1 Optimization procedure for large k

According to the GPY sieve formula (9.2), permuting hq, ..., h; does not af-
fect the asymptotic formula, so we naturally assume F' to be symmetric about
t1,...,tg. Combining this assumption with (?7?), we see that J,gm) = J} = Jy,
so My = kJi/I;. Therefore, optimizing (10.3) is the same as finding upper
bounds for I and lower bounds for J.

To simplify the task, Maynard assumed F' to take the form

Flty,... ty) = g(kty)g(kts) - - g(kty) (10.4)

on its support t; + --- + tx < 1, where g is some smooth function on [0, 7.
Plugging this into (10.1) and (10.2), we get

T/k k T
I < (/ g2(kt)dt> =k7Fyk 4= / g*(u)du (10.5)
0 0
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and

T/k 2
Ji > // (/O g(ktl)dh) I o kti)dty ---dt

tayeti >0 2sisk
S ocicn ti<1=T/k

_ ko (/OTg(u)du>2 // [ Pw)du du.  (10.6)

Uz, up€f0,7] ZSISK
scick wiSk—T
Let J,’C be the version of Jy without the blue condition. Then

2

i = phe <[> g(u)du)2 (AOO gz(u)du)k_l koLl (/OOO g(u)du> ,

(10.7)
Compared to (10.2), (10.7) is simpler in structure, so we hope the error

J/
Ey=J,—Jy = ’Ykil / H g2(ui)du2 o duy (10.8)
ug,..upef0,1] 2SSk
2<i<k Wi>k=T

is small. This means g(u) must be very small for large u. To achieve this, we
invoke some intuitions from physics.

10.2 Simplex and center of mass

Remark. Let Py, P, ..., P, be points in a Euclidean space in general position
(i.e., no P; is a convex linear combination of others). Then the set of points of

the form
n n

thpj tjG[O,l], Zt]::l

Jj=0 J=0
is called an n-simplex.

Since squares of real numbers are non-negative, we can regard J, and Jj, as
the mass of certain geometric objects. Indeed, the former denotes the mass
of a (k — 1)-simplex whose vertices consist of the origin and k¥ — 1 standard
basis vectors, and the latter corresponds to that of a (k — 1)-hypercube, and the
density of these objects is given by

. 2
plug, ... uy) =k k1 (/0 g(u)du) H g% (u;) (10.9)

2<i<k

From a physical point of view, J;, well approximates J;, if the center of mass of
the (k — 1)-hypercube lies within the hypercube [0,1 — %]k_l embedded in the
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(k —1)-simplex > o ;pui <1— L Therefore, we introduce the inequality

T 2
d
:M<1_z_ (10.10)

Jy 9*(u)du k
Under this assumption, we estimate Ej in (10.8).
Since k — T = (k—1) — (T — 1), we have
T-1

Zui>k—T<:>ﬁZuz lfﬁ.

2<i<k 2<i<k

Moreover, because k£ > T and k > 2, so % > % Hence, setting the right-hand
side as 7 + u, we get

T-1
=(1-7—)- 10.11
K < k—l) >0 (10.11)
and
2

! ? x> k=T
— S w24 Losich Ui > . (10.12)
_12§i§k 0 Docicpui <k-=T

Plugging (10.12) into the multiple integral in (10.8), one has

2
U; — 2 () dus - - - du
[ /Wlkz | TI oPOun)dus- - duy

2<i<k 2<m<k
Zzgzgk u; >k—T

:/m]“ ((16—21)2 Z uitly

2<z<]<k
2 Y witt gt ¥ o)
2<7,<k: 2<i<k
X H gQ(um)duQ---duk. (10.13)
2<m<k

By (10.10) and symmetry, we know

/[0 e IT o (um)dus---duy = py*,

2<m<k
/ H g um du2 dUk = M’Yk_lv
[0,T]*

2<m<k

and
/ 2 I % (um)duz - duy < pTy" .
[0,7]k—1

2<m<k
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Plugging these back into (10.13), we deduce that

J! . uT w2 JiuT
B < k=2 k=1 _ <k
e \E D1 T k1) SRk —1)

T
> J! 1—7“ .
JkJ’“( nQ(k—1)>

Combining this with (10.3), (10.5), (10.6), and (10.7), we obtain the following

lower bound:
2
r T
> 571 S .
My >y </0 g(u)du) (1 T 1)> (10.14)

10.3 The optimal choice of g

SO

According to (10.14), the optimization problem with respect to a multivariable
function F'(t1,...,t;) has now become a simpler optimization problem with
respect to g(u):

AT g(u)du

By the principle of Lagrange multipliers, we construct the functional

S(g) = /OTQ(U)du -« (/OT 9% (u)du — 7) B (/OT ug® (u)du — lW)
_ /OT <g(u) — (o + Bu)gP(u) + ‘W) du.

L(u,g)

max
g

T T
s.t. 72/ g*(u)du, ,Lw:/ ug®(u)du.  (10.15)
0

0

Now, by the Euler-Lagrange equation and gng = 0, we see that S(g) attains

extremum under the choice

et
g(u)_2a+25u_1+Au’ A=p/a>0, (10.16)
so we have
T 901 012 ,
/o sl = 62 log(1-+ A7), 7= 62 (1 - 1+AT> . (1017)
and - 1
wy = ( 2)2 [mg(l + AT) — (1 — HAT)] . (10.18)
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These imply that

T 2 2
_ log“(1 + AT) 1 log(1 + AT)
1 og L+ Aal) (e Tmar)
! </0 g(U)du> - A » BT\ T e ee(iAT) b
(10.19)

A
Now, we set T'= <1, so

1 A 1 _A
“m(w‘l)—lmw(e )

- o <1- L hoe
o AeA € - ed €
T . T
— —_— < _—
- Sl 04 < 1-

for large A. To ensure (10.10) holds, we require e* = o(k). Now, by (10.11),
we also know

_ _ oA
=t Tl o =12 ogae )y,
which implies
T (=AYt —1)/A :
D)~ ARG - o)
e e
1{1+O<;+k+;>}. (10.20)

Now, set e? = k/log?k, so Ae=* ~ k= log® k, k~'e? ~ (logk)~2, and A~! ~

(log k)~1, so (10.20) becomes
1 1 1
¢ (logk)} ~Togk ¢ (log2k> '

Combining this with (10.19) and plugging them into (10.14), one deduces that

Mk2A<1—MT>

wl < 1 14
n2(k—1) ~ logk

n?(k—1)
:(logk—Qloglogk:){l— ! +O< 12 )}
log k log” k
=logk — 2loglogk — 1+ o(1). (10.21)

Now, let us discuss the number-theoretic significance of (10.21).
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10.4 Proof of Theorem 10.1
By (10.21), we have for large k that

0 0

k
(log k)2
Since the main term on the right-hand side is increasing, for each m € N one
can find k € N such that rp, > m + 1. Therefore, we can find D,,, = C;, > 2 such
that there exist infinitely many intervals of length D,,, containing m + 1 primes,

0
lim inf (ppym — pn) < D, < 00. (10.22)

n—oo

We can go further to explore the growth of D,, with respect to m. Set k =
[Bm?e?™/?]. Then for large B, m, one has

Bm262m/9

1 1
2logm + 2m/0)? +0()

7°>Qlo
k_2 g(

0
:m+§logB+O(1)>m+1.

Based on our study of admissible tuples in §8.5, let hq, ha, ..., hy be the first k
primes greater than k. Then H = {hq,..., hi} is admissible. Therefore, we can
set
Cy = i hi — hi| < px — Pk, 10.23
k {hl,...,h;fr}uzrxldmissible1§r?gjxgk| i = gl < Priy ek — P ( )
By the prime number theorem, p,, ~ nlogn, so Cy < klogk. Plugging in our
expressions for k, we obtain a quantitative version of (10.22):

lim inf (pym — pp) < Cm>e2™/?, (10.24)
n—roo

By the Bombieri—Vinogradov theorem, we can take 6 = % Plugging this into
(10.24) concludes the proof of Theorem 10.1, which can be regarded as a gen-
eralization of Zhang’s theorem.

10.5 Optimization procedure for small k

If we can find k& such that
My, > 2/0, (10.25)

then we have
liminf(pp+1 — pn) < Ck. (10.26)

n—oo

From (10.23), we know O} is increasing with respect to k, so we want to find
the smallest k for which (10.25) holds, so we cannot just compute asymptotic
lower bounds.

68



Since continuous functions can be uniformly approximated by polynomials, for
small k, Maynard set F' to be a symmetric polynomial directly. Since F' is
supported on ¢ + - - - + ¢ < 1, a reasonable design is

b c

Foelty,..oti) = 1= >t S,

1<i<k 1<i<k

where b,c € Z>o. For flexibility, Maynard considered linear combinations of
Fy .. That is, when ¢ +--- + ¢ <,

Fti,....ts) = > ajFy, ¢ (t,. .. ). (10.27)
1<j<d

Plugging (10.27) into I, and J,gm), we see that when a = (a1,a9,...,aq4)" is a
column vector, there exists positive definite A1, As for which

EJ, aTAsa

My =—= . 10.28
k Ik aTAla ( )

Therefore, we have effectively converted a variational problem to an optimiza-
tion problem concerning the ratio of quadratic forms.

10.6 Optimization of the quadratic form

Since the ratio (10.28) is invariant under dilation, we can normalize the de-
nominator so we are now faced with a multivariable constraint optimization
problem.

mgxaTAga st. atAja=1, (10.29)

which is approachable using Lagrange multipliers. Define
L=a"Aa - )\(aTAga —-1).
Then the gradient calculation gives

L
0= % = (2A2 — 2)\141)0, = Al_lAga = \a.

Therefore, L attains extremum if and only if @ is an eigenvector of A7 Ay, so
the solution to (10.29) is exactly the largest eigenvalue of A7'Ay:

Mk = aTAl(/\a,) = A

10.7 Proof of Theorem 10.2

By running Mathematica code, Maynard found that when k = 105, the largest

eigenvalue of Al_lAg is A = 4.02 > 4, so when 0 = %, one has Mjps > 2/0.
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Hence, the remaining task is to find an admissible H of size 105. According to
the Andrew Sutherland’s lookup table?, we can take

H = {0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82, 90, 94, 100, 112,
114, 118, 120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192, 202,
204, 208, 220, 222, 232, 234, 250, 252, 258, 262, 264, 268, 280, 288, 294, 300,
310, 322, 324, 328, 330, 334, 342, 352, 358, 360, 364, 372, 378, 384, 390, 394,
400, 402, 408, 412, 418, 420, 430, 432, 442, 444, 450, 454, 462, 468, 472, 478,
484, 490, 492, 498, 504, 510, 528, 532, 534, 538, 544, 558, 562, 570, 574, 580,
582, 588, 594, 598, 600}.

Therefore, C1p5 = 600, so we deduce (10.2):

liminf(p,4+1 — pn) < 600,

n—oo

which is a significant improvement to Zhang’s bound.

10.8 Conclusion

In this article, we began our discussion from Maynard’s variational problem
and presented two different approaches for large and small &, eventually pro-
ducing generalizations and improvements of Zhang’s theorem. The publication
of Maynard’s result effectively caused Polymath8 to relaunch. By combining
Maynard’s method with Zhang’s, the project eventually improved Theorem 10.1
and Theorem 10.2 to

i inf(Prgm — pn) < Ce )™ liminf(pngt — pn) < 246 (10.30)
n— o0 n— oo

For curious readers, please see Tao’s blog post 2.

Dec 17, 2022

2https://math.mit.edu/~primegaps/
Shttps://terrytao.wordpress.com/2013/11/19/polymath8b-bounded-intervals-with-many-primes-after-maynard/
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