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Preface

This document is a translation of my Zhihu article series on prime gaps, written
in 2022 while I was an undergraduate student at University College London.

The first article discusses a corollary of the prime number theorem

lim inf
n→∞

pn+1 − pn
log pn

≤ 1 ≤ lim sup
n→∞

pn+1 − pn
log pn

.

The second article relates the prime gap and the distribution of zeros of the
Riemann zeta function ζ(s): If Θ is the supremum of the real parts of zeros of
ζ(s) in the critical strip, then

pn+1 − pn ≪ pΘn log pn.

The third article introduces sieve methods into the picture and proves an early
result of P. Erdös [8]

lim inf
n→∞

pn+1 − pn
log pn

< 1.

The rest of the series is dedicated to bounded gaps between primes. Three
articles are devoted to developing the groundbreaking sieve of Goldston, Pintz,
and Yıldırım [11], eventually showing that

lim inf
n→∞

(pn+1 − pn) ≤ C (0.1)

for some C <∞ provided that the level of distribution θ of primes in arithmetic
progression is larger than 1

2 (The Bombieri–Vinogradov theorem gives θ = 1
2 ).

This is then followed by an article addressing the limitations of their method.

Subsequently, we discuss the breakthrough work of Yitang Zhang [23], who over-
came the difficulties in the GPY sieve and showed that one can unconditionally
take C = 7× 107 in (0.1). Zhang’s treatment of the error terms is too technical
to be presented in the series, so the article only details the developments of the
main term in Zhang’s sieve.

The last two articles are dedicated to the work of James Maynard [14], in which
he showed that one can take C = 600 in (0.1). In addition, he showed that

lim inf
n→∞

(pn+m − pn) ≪ m3e4m. (0.2)

The first of these develops Maynard’s version of the GPY sieve and converts it
into a variational problem. The second article discusses Maynard’s solution to
the variational problem and deduces (0.2) and his estimate for C.

Travor Liu
Stanford, California
September 18, 2025
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Notation

p denotes a prime number.

s = σ + it refers to a complex number with real part σ and imaginary part t.

ρ = β+ iγ refers to a zero of the Riemann zeta function ζ(s) in the critical strip
with real part β and imaginary part γ.

n ≡ a(q) means n ≡ a (mod q).

π(x; q, a) =
∑
p≤x

n≡a(q)

1 and π(x) = π(x; 1, 1).

li(x) is the logarithmic integral defined by the principal value integral

lim
ε→0+

(∫ 1−ε

0

+

∫ x

1+ε

)
du

log u
.

Λ(n) is the von Mangoldt function equal to log p if n = pk and zero otherwise.

ψ(x; q, a) =
∑
n≤x

n≡a(q)

Λ(n) and ψ(x) = ψ(x; 1, 1).
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1 A beginning from the prime number theorem

In 2013, Yitang Zhang [23] caused a sensation in the mathematical world by
establishing the existence of infinitely many pairs of primes whose difference is
bounded by 70 million. After Zhang, this bound is continually reduced. As of
today, the best bound is 246 obtained by the Polymath project [15] in December
2014. In this series of articles, we will introduce some important results in the
study of prime gaps.

In this article, we use tools from analytic number theory to discuss the most
basic properties of the prime gap.

1.1 Partial sum of prime gaps

Denote by pn the n’th prime. Then by definition,

pN+1 = p1 + (pN+1 − p1) = p1 +
∑

1≤n≤N

(pn+1 − pn),

so when N = ⌊x⌋, one has

S(x) =
∑
n≤x

(pn+1 − pn) = p⌊x⌋+1 − p1 (1.1)

To better study the properties of (1.1), we need to estimate the size of p⌊x⌋+1

with respect to x. Let π(x) be the number of primes within x. Then the prime
number theorem states that

π(x) ∼ x

log x
. (1.2)

Set x = pn, so this becomes π(x) = n ∼ pn/ log pn. Taking logarithms, we get
log n ∼ log pn. Substituting this back into (1.2), we obtain

pn ∼ n log n. (1.3)

Remark. By using a stronger version of the prime number theorem, we can
improve (1.3) to pn = n(logn+ log log n+O(1)).

Plugging (1.3) into (1.1), we deduce that

S(x) ∼ x log x. (1.4)

For sequences an and bn, we say that bn is an average order of an is
∑

n≤x an ∼∑
n≤x bn as x → ∞. According Stirling’s formula, we know

∑
n≤x log n ∼

x log x, so logn is an average order of pn+1− pn. This information motivates us
to compare the magnitude of the prime gap with the natural logarithm.
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1.2 Prime gap and natural logarithm

Suppose a, b are constants such that a log n ≤ pn+1 − pn ≤ b log n for all large
n. Then

[a+ o(1)]x log x ≤ S(x) ≤ [b+ o(1)]x log x. (1.5)

Now, plugging (1.4) into (1.5), we conclude that a ≤ 1 ≤ b. This means for all
ε > 0, there exists infinitely many n such that pn+1 − pn > (1 − ε) log n and
infinitely many other n such that pn+1−pn < (1+ε) log n. Combining this with
log n ∼ log pn and the language of lim sup and lim inf, we obtain the following
inequalities:

lim inf
n→∞

pn+1 − pn
log pn

≤ 1, (1.6)

lim sup
n→∞

pn+1 − pn
log pn

≥ 1. (1.7)

1.3 Conclusion

In this article, we began by discussing the partial sum S(x) of prime gaps. Using
the prime number theorem, we proved S(x) ∼ x log x, allowing us to deduce (1.6)
and (1.7). Specifically, (1.6) indicates that the gap between consecutive primes
can be as small as their logarithms infinitely many times, while (1.7) indicates
that the gap can be as large as their logarithms indefinitely. Hence, the prime
number theorem marked the commencement of two types of investigations into
the prime gap:

Small gaps between primes: Can we find infinitely many n such that pn+1−
pn ≤ f(n)? The state-of-the-art result in this direction is f(n) ≤ 246 due to
Polymath.

Large gaps between primes: Can we find infinitely many n such that pn+1−
pn ≥ F (n)? The best record up to now is

F (n) ≫ log n log logn log log log logn

log log log n

due to Ford–Green–Konyagin–Maynard–Tao [9] in 2017.

In the subsequent articles, we focus on the small gaps between primes.

June 23, 2022
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2 Prime gaps and the zeros of ζ(s)

In 1936, Harald Cramer [5] proved using complex-analytic methods that under
the Riemann hypothesis,

pn+1 − pn = O(
√
pn log pn).

In this article, we prove a generalization:

Theorem 2.1. When Θ ≥ 1
2 is the supremum of the abscissa of the zeros of

ζ(s), one has
pn+1 − pn = O(pΘn log pn).

2.1 Method of investigation

Let π(x) be the number of primes within x. Then π(y) > π(x) if and only if
(x, y] contains a prime. This observation allows us to estimate the upper bound
of prime gaps.

The relationship with the zeros of ζ(s) is established by Riemann’s explicit
formula:

π(x) = li(x)− lim
T→+∞

∑
ρ

|γ|≤T

li(xρ) +O

( √
x

log x

)
. (2.1)

Because the sum over zeros in (2.1) is conditionally convergent, Cramer’s deriva-
tion relies on his earlier extensive study [4] of the sum

∑
ρ e

ρz in 1919. Today,
we have more advanced tools to prevent us from directly manipulating condi-
tionally convergent series, so we can get a simplified proof for Theorem 2.1.

2.2 From infinite series to finite sums

For various conveniences, in analytic number theory, the partial sum ψ(x) of
the von Mangoldt function Λ(n) is used in place of π(x) when it comes to the
distribution of primes, for it only differs from

ϑ(x) =
∑
p≤x

log p

by an error of ≪
√
x. Therefore, if we can find some f(x) growing faster than√

x such that for L = L(x),

ψ(x, L) =
∑

x−L<n≤x+L

Λ(n) > f(x), (2.2)

then the interval (x−L, x+L] will contain a prime. By Perron’s formula [6, p.
109], one has for 2 ≤ T ≤ x that

ψ(x) = x−
∑

|ℑρ|≤T

xρ

ρ
+O

(
x log2 x

T

)
. (2.3)
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As the formula (2.3) only involves a finite sum, we can manipulate terms freely
without worrying about convergence issues.

Let N(T ) be the number of zeros of ζ(s) with 0 ≤ β ≤ 1 and 0 < γ ≤ T . Then
by the Riemann–von Mangoldt formula [6, p. 98], we have

N(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (2.4)

Combining (2.4) with partial summation, one has∑
|ℑρ|≤T

1

|ρ|
= O(log2 T ).

Setting T = x1−Θ, we see that (2.3) becomes

ψ(x) = x+O(xΘ log2 x).

Therefore, when L ≤ x, there exists absolute A > 0 such that

ψ(x, L) > 2L−AxΘ log2 x.

Set L = AxΘ log2 x, so that the right-hand side is ≫ xΘ log2 x. By partial
summation, we see that there exists some C > 0 such that the number of
primes in (x− CxΘ log2 x, x+ CxΘ log2 x] is ≫ xΘ log2 x.

Since x± CxΘ log2 x ≍ x, we also deduce that

Theorem 2.2. When Θ ≥ 1
2 is the supremum of the abscissa of the zeros of

ζ(s), one has
pn+1 − pn = O(pΘn log2 pn).

Thus, we see that a direct asymptotic evaluation of (2.2) only gives a result off
from Theorem 2.1 by a logarithm. However, we can fill the gap by introducing
a weight w(n) ≥ 0 such that

ψ(x, L) ≥
∑
n

w(n)Λ(n).

2.3 Choice of weights

We are now in a situation similar to one possible development of the large sieve.
By taking ideas from [6, p. 155], we introduce the linear weight:

w(t) = max

(
1− |x− t|

L
, 0

)
,

so we have ∑
n

w(n)Λ(n) =

∫ x+L

x−L

w(t)dψ(t) = −
∫ x+L

x−L

w′(t)ψ(t)dt

=
1

L

∫ x+L

x

ψ(t)dt+
1

L

∫ x−L

x

ψ(t)dt.
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Now, defining

ψ1(x) =

∫ x

0

ψ(t)dt, (2.5)

we simplify this to

ψ(x, L) ≥ 1

L
ψ1(x+ L) +

1

L
ψ1(x− L)− 2

L
ψ1(x). (2.6)

In the rest of this article, we estimate the right-hand side of (2.6) by evaluating
ψ1 asymptotically.

2.4 Asymptotic formula for ψ1(x)

By integration by parts, one has

ψ1(x) = xψ(x)−
∫ x

0

tdψ(t) =
∑
n≤x

(x− n)Λ(n). (2.7)

Using the observation that for k > 0,

1

2πi

∫ k+i∞

k−i∞

ys+1

s(s+ 1)
ds = max(y − 1, 0),

we can rewrite (2.7) into a contour integral:

ψ1(x) =
−1

2πi

∫ 2+i∞

2−i∞

xs+1

s(s+ 1)

ζ ′

ζ
(s)ds. (2.8)

Moving the contour to σ = −1 and applying standard estimates for ζ ′/ζ (see,
for example, [6, p. 108]), we obtain

ψ1(x) =
x2

2
−
∑
ρ

xρ+1

ρ(ρ+ 1)
+O(1). (2.9)

By partial summation with (2.4), one finds that the sum over ρ converges ab-
solutely. Motivated by the arguments in the previous section, we still truncate
the sum, so it follows from∑

|γ|>T

1

ρ(ρ+ 1)
≪
∑
γ>T

1

γ2
=

∫ +∞

T

dN(u)

u2
≪ log T

T

that for 2 ≤ T ≤ x, (2.9) becomes

ψ1(x) =
x2

2
−
∑
|γ|≤T

xρ+1

ρ(ρ+ 1)
+O

(
xΘ+1 log x

T

)
(2.10)

Remark. We get an error better than directly integrating (2.3).
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2.5 Proof of Theorem 2.1

Plugging (2.10) into (2.6), one has

ψ(x, L) ≥ (x+ L)2 + (x− L)2 − 2x2

2L

− 1

L

∑
|γ|≤T

(x+ L)ρ+1 + (x− L)ρ+1 − 2xρ+1

ρ(ρ+ 1)

+O

(
xΘ+1 log x

LT

)
.

Notice that

yρ+1

ρ(ρ+ 1)
=

∫ y

0

dt

∫ t

0

uρ−1du =

∫ y

0

(y − u)uρ−1du,

so the blue part becomes

(x+ L)ρ+1 + (x− L)ρ+1 − 2xρ+1

ρ(ρ+ 1)

=

∫ x+L

x−L

(L− |x− u|)uρ−1du = O(L2xΘ−1).

Plugging these back, we get

ψ(x, L) ≥ L−A1(LTx
−1)xΘ log x−A2(LTx

−1)−1xΘ log x.

Now, setting T = xL−1, A3 > A1 +A2, and L = A3x
Θ log x, we deduce that∑

x−L<p≤x+L

log p≫ ψ(x, L) ≫ xΘ log x,

which indicates that for some C > 0 and all large x, the interval (x, x+CxΘ log x]
always contains a prime, completing the proof of Theorem 2.1

2.6 Conclusion

In this article, we connect the problem of prime gaps with the zeros of ζ(s)
using explicit formulas. By using the truncated explicit formula (2.3), we deduce
Theorem 2.2. Finally, by introducing weights to the estimation of ψ(x, L), we
improved Theorem 2.2 to Theorem 2.1.

From the derivations, we can also find out the limitations of the method. Be-
cause ψ(x) and ϑ(x) differ by an error of ≍

√
x, the approach in the present

article is incapable of going beyond pn+1−pn = O(
√
pn). Nevertheless, the idea

of introducing weights in the process of refining Theorem 2.2 plays a crucial role
in the study of prime gaps. Stay tuned for the new articles!

June 29, 2022
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3 Sieve method and small gaps

In §1, we proved using the prime number theorem that

lim inf
n→∞

pn+1 − pn
log pn

≤ 1. (3.1)

The first improvement to (3.1) was given by Hardy and Littlewood in 1926.
In 1926, they applied the circle method and successfully replaced the right-
hand side of (3.1) with 2

3 under GRH. In 1940, Rankin [16] replaced 2
3 with 3

5
under GRH. In the same year, Erdös [8] used an elementary method to show
unconditionally that the right-hand side of (3.1) can be replaced with 1− η for
some η > 0. In this article, we will walk through Erdös’s approach.

3.1 Main idea

According to the definition of limit infimum, if (3.1) cannot be improved, then
for all δ > 0, there is some n0(δ) such that

n > n0 ⇒ pn+1 − pn > (1− δ) log pn.

On the other hand, there exist infinitely many n for which

pn+1 − pn < (1 + δ) log pn.

If we can derive a contradiction from this information, then we can deduce

lim inf
n→∞

pn+1 − pn
log pn

̸= 1

and thus completing the proof.

3.2 Differencing and summing

Denote by q1, q2, . . . , qt the primes in (x, 2x]. Then evidently, = qt − q1 ≤ x.
We can also write x as a sum of prime gaps:

S = qt − qt−1 + qt−1 − qt−2 + · · ·+ q2 − q1 =
∑

1≤k<t

(qk+1 − qk) (3.2)

Let T1 be the number of k’s such that

(1− δ) log qk ≤ qk+1 − qk ≤ (1 + δ) log qk

and T2 be the number of k’s such that this inequality is false. Then by (3.2),
we have

S ≥ T1(1− δ) log x+ T2(1 + δ) log x. (3.3)

If we can show that the right-hand side of (3.3) is > x for sufficiently large x,
then we can reach a contradiction to conclude. To fulfill this objective, we need
to estimate T1 and T2

12



3.3 Treatments for T2

Let π(y) be the number of primes ≤ y. Then, according to the prime number
theorem,

T2 = π(2x)− π(x)− T1 = [1 + o(1)]
x

log x
− T1.

Plugging into (3.3), we get

S > −2T1δ log x+ [1 + δ + o(1)]x, (3.4)

completing the easy step of our derivation.

3.4 Estimation of T1

In analytic number theory, a typical strategy to estimate a single sum is to
convert it into a double sum and then interchange the order of summation.
Define I = [(1− δ) log x, (1 + δ) log 2x], so

T1 ≤
∑

1≤k<t
qk+1−qk∈I

1 =
∑
m∈I

∑
1≤k<t

qk+1−qk=m

1. (3.5)

3.5 Preliminary handling of the blue term

Because we are looking for an upper bound, we can relax the conditions in
the summation to simplify the task. In the context of (3.5), we can weaken
qk+1 − qk = m to qk +m being a prime, so∑

1≤k<t
qk+1−qk=m

1 ≤
∑

1≤k<t
qk+m prime

1 =
∑

x<p≤2x
p+m prime

1. (3.6)

For an integer N > 1, it follows from the pigeonhole principle that N is a prime
if and only if it has no prime factor ≤

√
N , so when 2 ≤ z ≤

√
x, one has∑

x<p≤2x
p+m prime

1 ≤
∑

x<n≤2x
p<z⇒p∤n(n+m)

1. (3.7)

3.6 Application of sieve methods

Let
A = {n(n+m) : x < n ≤ 2x}, Ad = {a ∈ A : d|a},

and P denotes the set of primes. Then under the standard sieve notation, the
right-hand side of (3.7) is precisely S(A,P, z). Therefore, we have transformed
the prime gap problem into a sieve problem.
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Let νd be the number of solutions to n(n+m) ≡ 0 (mod d) in Z/dZ. Then

|Ad| =
νd
d
x+O(1)

and for prime p,

νp =

{
1 p|m
2 p ∤ m

Consequently, by the fundamental lemma of sieve theory [12, Theorem 2.2],
there exists some A > 0 such that for z = xA,

S(A,P, z) ≪ x
∏

2<p<z

(
1− νp

p

)
= x

∏
2<p<z
p|m

p− 1

p− 2

∏
2<p<z

(
1− 2

p

)

≪ x

log2 x

∏
p|m
p>2

(
1 +

1

p− 2

)
≪ x

log2 x

∏
p|m

(
1 +

1

p

)
.

Plugging this into (3.7), (3.6), and (3.5), we obtain

log2 x

x
T1 ≪

∑
m∈I

∏
p|m

(
1 +

1

p

)
≤
∑
m∈I

∑
d|m

1

d

=
∑

d≤(1+δ) log 2x

1

d

∑
m∈I
d|m

1 ≪
∑

d≤(1+δ) log 2x

δ log x

d2
+

∑
d≤(1+δ) log 2x

1

d

≪ δ log x+ log log x≪ δ log x.

Having completed the estimation of T1, we proceed to the final computations.

3.7 Lower bound for S

Plugging our conclusions in the previous section into (3.4), we see that for some
large A > 0, one has

S > (1 + δ −Aδ2)x = [1 + δ(1−Aδ)]x.

Thus, if δ < A−1, the right hand side will be > x, creating a contradiction to
S ≤ x. There for there exists some η > 0 such that

lim inf
n→∞

pn+1 − pn
log pn

≤ 1− δ (3.8)

14



3.8 Conclusion

In this article, we improved the PNT bound (3.1) to (3.8) by introducing sieve
methods. In 1954, Ricci showed that (3.8) holds for η ≥ 1

16 . In 1965, by
replacing the GRH assumption with the Bombieri–Vinogradov theorem in the
Hardy–Littlewood argument, Bombieri and Davenport [2] showed that η ≥ 1

2 .
During the second half of the 20th century, these bounds were improved by
Pilt’ai, Uchiyama, Huxley, Maier, and others. Eventually in 2009, Goldston,
Pintz, and Yıldırım [11] settled the question by establishing

lim inf
n→∞

pn+1 − pn
log pn

= 0 (3.9)

via a deft sieve design.

Not only did the method of Goldston, Pintz, and Yıldırım produce (3.9), but it
also demonstrated that under a hypothesis on the regularity of the distribution
of primes in arithmetic progressions, there exist infinitely many pairs of primes
whose distance is bounded by 16. Their methods will be expounded in the next
few articles of the series. Please stay tuned for updates!

July 6, 2022
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4 Primes in tuples and the GPY sieve

In the previous articles, we have investigated the prime gap pn+1 − pn via both
analytic and elementary methods. In the next few articles, we focus on a work
that made extensive use of both elementary and analytic methods — the GPY
sieve, which is named after Goldston, Pintz, and Yıldırım who authored the
2009 paper [11]. Their work indicated that under a certain assumption on the
distribution of primes in arithmetic progressions, there exist infinitely many
pairs of primes with bounded distance.

In the present article, we discuss the motivation of the GPY sieve from a his-
torical perspective. The technicals will be deferred to future articles. From now
on, let us turn our focus back to the 20th century.

4.1 Prime k-tuple conjecture

Let H = {h1, h2, . . . , hk} be a set of integers. Then we can formulate a conjec-
ture as follows:

Conjecture 4.1 (Naive prime k-tuple). For all H, there exist infinitely many
n such that each n+ hi is prime for 1 ≤ i ≤ k.

The term “naive” is added because we can easily come up with a counterexam-
ple. Take H = {1, 2, · · · , k− 1, k}. Then it is clear that for each n ∈ Z, at least
one of n + j is divisible by k, so they cannot all be primes. Consequently, we
need to impose some restrictions on H to make the conjecture more plausible.

Admissible k-tuple By generalizing our previous counterexample, we see
that Conjecture 4.1 is false as long as we can find some prime p such that for
every n, p divides some n+ hi. In other words, let

Q(n) = (n+ h1)(n+ h2) · · · (n+ hk).

Then the conjecture is false if Q(n) is always divisible by a fixed prime p.

Now, let νp be the number of n ∈ Z/pZ such that

Q(n) ≡ 0 (mod p).

Then the condition above is equivalent to νp = p for some p. For H to satisfy
Conjecture 4.1, it is thus necessary that ∀p, νp < p. Therefore, we say H is an
admissible k-tuple if ∀p, νp < p.

Remark. H is admissible as long as νp < p for all p ≤ k.

Based on the analyses above, Hardy and Littlewood [13, p. 61] conjectured the
following:

16



Conjecture 4.2 (Hardy–Littlewood prime k-tuple). Let H be an admissible
k-tuple. Then there exist infinitely many n such that each n+ hi is a prime for
1 ≤ i ≤ k. Moreover, as x→ ∞,

#{n ≤ x : n+ hi prime, 1 ≤ i ≤ k} ∼ H
x

logk x
,

in which

H =
∏
p

(
1− νp

p

)(
1− 1

p

)k

.

If H is not admissible, then H = 0, so if Conjecture 4.2 is valid, then Conjec-
ture 4.1 holds if and only if H is admissible.

4.2 Prime k-tuples, twin primes, and prime gap

By sieve methods, one can easily show that for each k there is some Ck such
that for each admissible k-tuple H, there exists infinitely many n such that each
n+ hi is a product of at most Ck primes. In particular, when k = 2, it follows
from the method of Jingrun Chen [3] that

Theorem 4.1 (Chen, 1973). For each even h, there exist infinitely many primes
p such that p+ h is either a prime or a product of two primes.

However, the prime k-tuple conjecture has more inspirations. If for a fixed
admissible H, we can find infinitely many n such that at least two members
of n + h1, n + h2, . . . , n + hk are primes, then we find infinitely many pairs of
primes with bounded distance:

lim inf
n→∞

(pn+1 − pn) ≤ max
1≤i<j≤k

|hi − hj |. (4.1)

It is this inequality that makes Goldston, Pintz, and Yılıdırım construct their
seminal sieve. Having analyzed the principles, we turn to computations.

4.3 Weighted sums

Abstractly, for sets X,Y ⊂ Z, to show that they have a non-empty intersection,
one direct approach is to prove |X ∩ Y | > 0. To achieve this, it is also helpful
to introduce weights. Let w : X → R be such that

w(n)

{
> 0 n ∈ Y,

≤ 0 n /∈ Y.

Then
S =

∑
n∈X

w(n) > 0

is a sufficient condition to |X ∩ Y | > 0.

17



Now, we apply this philosophy to the problem of prime gaps. Let χP be the
characteristic function for primes. Then, based on the analyses in the previous
section, we define

S(N) =
∑

1≤n≤N

 ∑
1≤i≤k

χP(n+ hi)− 1

 (4.2)

Therefore, to establish (4.1), it suffices to show that limN→+∞ S(N) = +∞.

Nevertheless, according to the prime number theorem,
∑

n≤N χ(n) ∼ N/logN ,
making (4.2) negative for large N , so (4.2) cannot help us investigate prime
gaps. Regardless, Goldston, Pintz, and Yıldırım did not give up and decided to
take in some ideas from Selberg.

4.4 Weighted Selberg sieve

In 1947, Selberg developed a powerful sieve [19] based on the non-negativity
of squares. By incorporating Selberg’s idea into the picture, we see that when
{λd} is a real sequence such that λ1 = 1, the following

S′(N) =
∑
n≤N

 ∑
1≤i≤k

χP(n+ hi)− 1

 ∑
d|Q(n)

λd

2

(4.3)

diverging to positive infinity can also serve as a sufficient condition to (4.1).
When n is small, there would be some computational complications concern-
ing the hi’s, so Goldston, Pintz, and Yıldırım replaced the range of the outer
summation with a dyadic interval:

S′′(N) =
∑

N<n≤2N

 ∑
1≤i≤k

χP(n+ hi)− 1

 ∑
d|Q(n)

λd

2

. (4.4)

Thus, (4.1) will directly follow from S′′(N) > 0.

4.5 Conclusion

In this article, we began by generalizing the twin primes conjecture to prime
k-tuple conjectures. Realizing the counterexamples to our naive conjecture Con-
jecture 4.1, we introduced the notion of admissible tuples and formulated the
Hardy–Littlewood conjecture Conjecture 4.2. Although we are unable to prove
the conjecture using sieves, through the inequality (4.1), a partial form of this
conjecture can lead to significant progress in the prime gap problem.

With this realization in mind, we developed weighted sums and combined ideas
from Selberg, resulting in the GPY sieve (4.4).
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Although Goldston, Pintz, and Yıldırım’s initial choice of λd fails to estab-
lish bounded gaps between primes unconditionally, analyzing their work is still
valuable. Only through in-depth analysis of the GPY sieve can we fathom their
limitations and properly appreciate the works of Yitang Zhang and James May-
nard. Due to space reasons, these discussions will be presented in subsequent
articles. Please stay tuned for updates!

July 24, 2022
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5 Elementary transforms and equidistributions

In the previous article, we formulated the GPY sieve using the Hardy–Littlewood
k-tuple conjecture.

S =
∑

N<n≤2N

 ∑
1≤i≤k

χP(n+ hi)− 1

 ∑
d|Q(n)

λd

2

(5.1)

and showed that the existence of infinitely many pairs of primes with bounded
gaps will follow from S > 0 for all large N . In this article, we elaborate on the
computation of S:

U =
∑

N<n≤2N

 ∑
d|Q(n)

λd

2

, (5.2)

Vi =
∑

N<n≤2N

χP(n+ hi)

 ∑
d|Q(n)

λd

2

. (5.3)

Consequently, if we can compute the asymptotic expansion for U and each Vi,
then (5.1) can be studied by

∑
1≤i≤k Vi − U .

5.1 Preliminary expansion of U

By interchanging the order of summation, (5.2) immediately becomes

U =
∑
d1,d2

λd1λd2

∑
N<n≤2N

[d1,d2]|Q(n)

1.

Let νd denote the number of solutions to Q(n) ≡ 0 (mod d) in Z/dZ. Then in
each subinterval of (N, 2N ] of length d, there are exactly νd many n’s such that
d|Q(n), so

U =
∑
d1,d2

λd1λd2ν[d1,d2]

{
N

[d1, d2]
+O(1)

}
= NMU + EU . (5.4)

Writing gU (d) = νd/d, MU becomes

MU =
∑
d1,d2

gU ([d1, d2])λd1
λd2

. (5.5)

Similar to Selberg’s sieve, we can assume a priori that |λd| ≤ 1 and λd is
supported on square-free integers in [1, R], so we have

|EU | ≤
∑

d1,d2≤R

µ2(d1)µ
2(d2)ν[d1,d2] ≤

∑
d≤R2

µ2(d)3ω(d)νd.
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By the Chinese remainder theorem, νd is a multiplicative function of d, so it
follows from Rankin’s trick that this is

≤ R2
∑

p|d⇒p≤R2

µ2(d)3ω(d)νd
d

= R2
∏

p≤R2

(
1 +

3νp
p

)
.

Since Q(n) is a polynomial of degree k, it has at most k roots in Z/pZ, which
indicates that νp ≤ k and

EU ≪ R2
∏

p≤R2

(
1 +

3k

p

)
≤ R2 exp

∑
p≤R2

3k

p

≪ R2(logR)3k. (5.6)

Comparing (5.6) to (5.4), we see that R cannot exceed the square root of N for
otherwise the error term EU may exceed the main term NMU . Thus, the only
remaining task for U is the computation of MU . For now, we transfer our focus
to Vi.

5.2 Preliminary expansion of Vi

After interchanging the order of summation, we need to compute∑
N<n≤2N
Q(n)≡0(d)

χP(n+ hi) =
∑

1≤a≤d
Q(a)≡0(d)

∑
N−hi<p≤2N−hi

p≡a+hi(d)

1. (5.7)

If a+hi is not coprime to d, then the purple term vanishes for all large N , so we
impose an extra condition (a+ hi, d) = 1 outside. Hence, by the prime number
theorem in arithmetic progressions,∑

N<n≤2N
Q(n)≡0(d)

χP(n+ hi)

=
∑

1≤a≤d
Q(a)≡0(d)
(a+hi,d)=1

[π(2N ; d, a+ hi)− π(N ; d, a+ hi) +O(1)]

=
∑

1≤a≤d
Q(a)≡0(d)
(a+hi,d)=1

[
1

φ(d)

∫ 2N

N

du

log u
+O{E1(N, d)}

]
,

(5.8)

in which

E(x, d) = max
(a,d)=1

∣∣∣∣π(x; q, a)− 1

φ(q)

∫ x

2

du

log u

∣∣∣∣
and E1(N, d) = E(N, d) + E(2N, d). Since the dependence on a + hi has been
eliminated in (5.8), we can now compute the green sum directly. Set

bi(d) = #{1 ≤ a ≤ d : d|Q(a), (a+ hi, d) = 1}.
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Then bi(d) is multiplicative and bi(p) = νp − 1, so

bi(d) = b(d) =
∏
p|d

(νp − 1). (5.9)

Therefore, (5.8) becomes∑
N<n≤2N
Q(n)≡0(d)

χP(n+ hi) =
b(d)

φ(d)

∫ 2N

N

du

log u
+O{b(d)E1(N, d)}.

Plugging this back into (5.3), we get

Vi =MV

∫ 2N

N

du

log u
+O(EV ), (5.10)

in which when gV (d) = b(d)/φ(d), we have

MV =
∑
d1,d2

gV ([d1, d2])λd1
λd2

. (5.11)

By Cauchy–Schwarz, EV becomes

EV ≪
∑
d≤R2

µ2(d)3ω(d)b(d)E1(N, d)

≤

 ∑
p|d⇒p≤R2

µ2(d)9ω(d)b2(d)E1(N, d)

1/2

×

∑
d≤R2

µ2(d)E1(N, d)

1/2

.

(5.12)

From π(x; q, d) ≪ x/q, we know E1(x, d) ≪ x/d, so the blue part becomes∑
p|d⇒p≤R2

µ2(d)9ω(d)b2(d)E1(N, d) ≪ N
∑

p|d⇒d≤R2

µ2(d)9ω(d)b2(d)

d

= N
∏

p≤R2

(
1 +

9b2(p)

p

)
= N

∏
p≤R2

(
1 +

9(νp − 1)2

p

)

≤ N
∏

p≤R2

(
1 +

9(k − 1)2

p

)
≪ N(logR)9(k−1)2 .

(5.13)

As for the brown part, expanding gives∑
d≤R2

µ2(d)E1(N, d) ≤
∑
d≤R2

E(N, d) +
∑
d≤R2

E(2N, d). (5.14)

To estimate the remaining sums on the right, we need a concept known as the
level of distribution of primes.
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5.3 Equidistribution of primes in arithmetic progressions

From the naive prime number theorem for arithmetic progressions, we know for
fixed q and (a, q) = 1,

π(x; q, a) ∼ li(x)/φ(q),

but in many situations, we need to sum over π(x; q, a) over q. As a result, we
encounter error terms of the form

E(x,Q) =
∑
q≤Q

max
(a,q)=1

∣∣∣∣π(x; q, a)− li(x)

φ(q)

∣∣∣∣ .
By the Siegel–Walfisz theorem [6, p. 133], we know that for Q = (log x)A, one
has

E(x,Q) ≪A
x

logA x
. (5.15)

This later allowed I. M. Vinogradov [22] to solve the ternary Goldbach problem.
In 1948, A. Rényi [18] established the existence of θ > 0 such that (5.15) con-
tinues to hold for Q = xθ−ε, allowing him to demonstrate that every large even
integer is a sum of a prime and a product of ≤ C primes for some fixed C > 0
(a.k.a. proposition {1, C}). In 1965, A. I. Vinogradov [21] and E. Bombieri [1]
independently showed that (5.15) holds when θ = 1

2 , improving {1, C} to {1, 3}.
In 1970, Elliot and Halberstam [7] conjectured that (5.15) is valid even if θ = 1.
As a result, we introduce the following proposition:

Proposition 5.1 (EH(θ)). For all ε > 0 and Q = xθ−ε, (5.15) holds.

When this proposition holds, we say that the primes have level of distribution
θ.

Therefore, the Bombieri–Vinogradov theorem is equivalent to EH( 12 ) and the
Elliot–Halberstam conjecture is the same as EH(1). For the sake of generality,
we carry out subsequent computations with an unspecified θ and the assumption
of EH(θ).

According to (5.14), we see that for R = N
θ
2−ε, one has∑

d≤R2

µ2(d)E1(N, d) ≪
N

logAN
.

Plugging this with (5.13) into (5.12), we get EV ≪A N log−AN , so the error
terms are no longer a concern.

5.4 Asymptotic formula for S

Plugging (5.4) and (5.10) into (5.1), we deduce from∫ 2N

N

du

log u
∼ 1

logN

∫ 2N

N

du =
N

logN
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that

S ∼ N

logN
(kMV −MU logN). (5.16)

Our goal is accomplished as long as the red component is positive for large N .
Thus, we should focus on the quadratic forms MV ,MU .

5.5 Diagonalization of M

According to (5.5) and (5.11), both MU and MV can be computed in the same
manner, so we let (M, g) denote any one of (MU , gU ) and (MV , gV ). Then it
follows from the multiplicativity that

M =
∑
d1,d2

1

g((d1, d2))
λd1

g(d1)λd2
g(d2).

As in the derivation of Selberg’s sieve ([12, Chapter 3] or [10, §7.1]), define a
multiplicative function h(d) by

h(p) =
g(p)

1− g(p)
,

so one has

M =
∑
d1,d2

g(d1)λd1g(d2)λd2

∑
m|(d1,d2)

1

h(m)

=
∑
m≤R

1

h(m)

∑
d1,d2≤R
m|(d1,d2)

g(d1)λd1
g(d2)λd2

.

Therefore, when we define the following quantities:

hU (d) =
∏
p|d

gU (p)

1− gU (p)
=
∏
p|d

νp
p− νp

, (5.17)

hV (d) =
∏
p|d

gV (p)

1− gV (p)
=
∏
p|d

νp − 1

p− νp
, (5.18)

αm =
∑
d≤R
m|d

gU (d)λd = gU (m)
∑

n≤R/m
(n,m)=1

gU (n)λnm, (5.19)

βm =
∑
d≤R
m|d

gV (d)λd = gV (m)
∑

n≤R/m
(n,m)=1

gV (n)λnm, (5.20)

we can rewrite MU in (5.5) and MV in (5.11) into diagonal forms:

MU =
∑
m≤R

α2
m

hU (m)
, MV =

∑
m≤R

β2
m

hV (m)
. (5.21)
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5.6 Conclusion

In this article, we began the investigation from (5.1). By interchanging the
order of summation on quadratic forms, we transformed (5.1) to (5.16). By
introducing the prime number theorem for arithmetic progressions in the esti-
mation of EV , we effectively demonstrated the role of the level of distribution
in the development of the GPY sieve. Finally, by defining the auxiliary function
h(d), we reduce the quadratic forms MU ,MV in the main term into diagonal
forms (5.21).

Now, we have finished the derivations of the elementary part of the GPY sieve
that is independent of the choice of λd. In the next article, we will introduce a
special choice of λd and apply complex-analytic methods to obtain asymptotic
formulas for αm and βm, deriving the analytic part of the GPY sieve. Please
stay tuned for updates!

Aug 4, 2022
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6 Contour integration and the GPY theorem

In the previous article, we applied elementary methods to transform the GPY
sieve (5.1) into

S ∼ N

logN
(kMV −MU logN), (6.1)

in which

MU =
∑
m≤R

α2
m

hU (m)
, MV =

∑
m≤R

β2
m

hV (m)
, (6.2)

αm =
∑
d≤R
m|d

gU (d)λd = gU (m)
∑

n≤R/m
(n,m)=1

gU (n)λnm, (6.3)

βm =
∑
d≤R
m|d

gV (d)λd = gV (m)
∑

n≤R/m
(n,m)=1

gV (n)λnm. (6.4)

In this article, we will obtain asymptotic formulas for these quantities. Thus,
we need to specify the sieve parameter λd.

6.1 GPY’s choice of λd

Since Q(n) is a polynomial of degree k, one naturally believes that the GPY
sieve is a k-dimensional sieve problem. As a result, it is plausible that we can
achieve the best result by plugging in the optimal λd for the k-dimensional
Selberg upper bound sieve:

λd = µ(d)

(
logR/d

logR

)k

. (6.5)

Remark. The actual optimal λd in a Selberg sieve problem depends on g and
h but is asymptotic to (6.5) [12, Lemma 5.4].

However, the computations of Goldston, Pintz, and Yıldırım suggest that under
(6.5) we only have S ≤ 0 even assuming EH(θ) at θ = 1.

As a result, the authors decided to attack the problem using a sieve of a different
dimension. Specifically, they set λd to be the optimal parameter for a (k + ℓ)-
dimensional Selberg upper bound sieve:

λd = µ(d)

(
logR/d

logR

)k+ℓ

. (6.6)

Thus, we proceed to the expansion of αm, βm using (6.6).
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6.2 Asymptotic expansion of αm, βm

According to (6.3) and (6.4), αm and βm have very similar structures, so we
only elaborate on the computation for αm, and the reader can use an almost
identical argument to treat βm.

By contour integration, one has

m!

2πi

∫ c+i∞

c−i∞

xs

sm+1
ds =

{
(log x)m x > 1,

0 0 < x ≤ 1.
(6.7)

Plugging this into (6.3), we get

αm =
µ(m)gU (m)

(logR)k+ℓ

(k + ℓ)!

2πi

∫ c+i∞

c−i∞

∑
n≥1

(n,m)=1

µ(n)gU (n)

ns

︸ ︷︷ ︸
FU (s)

xs

sk+ℓ+1
ds, (6.8)

where x = R/m. By the Euler product formula for Dirichlet series with multi-
plicative coefficients, FU (s) can be rewritten into

FU (s) =
∏
p∤m

(
1− gU (p)

ps

)
=
∏
p∤m

(
1− νp

ps+1

)
.

Since νp ≤ p, FU (s) converges absolutely when σ = ℜ(s) > 0. To obtain
asymptotics for (6.8), we need to analytically continue FU (s) to a larger domain
containing σ = 0.

Analytic continuation of FU (s) Since gU (n) does not have good analytic
properties, we introduce a certain power of the Riemann ζ-function to offset the
poles of FU (s).

Since νp < k if and only if Q(n) has a repeated root in Z/pZ, so defining

∆ =
∏

1≤i<j≤k

|hi − hj |,

we see that νp < k if and only if p|∆. Because ∆ only depends on H, we see
that all but finitely many p satisfies νp = k, so when we factor FU (s) as

FU (s) = ζ−k(s+ 1)GU (s), (6.9)

the infinite product

GU (s) =
∏
p|m

(
1− νp

ps+1

)−1∏
p

(
1− νp

ps+1

)(
1− 1

ps+1

)−k

(6.10)
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will be analytic in a region larger than σ > 0. Using the power series expansion
of the logarithm, we see that when s = σ + it,

log

(
1− νp

ps+1

)(
1− 1

ps+1

)−k

=
νp − k

ps+1
+O

(
1

p2σ+2

)
.

Notice that νp = k for all large p, so the product for GU (s) converges absolutely
for σ > − 1

2 . Therefore, we can move our path of integration to somewhere
slightly to the left of σ = 0. Nevertheless, as in the proof of the prime number
theorem, we need to obtain upper bounds for FU (s) to determine the adequate
path of integration.

Upper bounds for FU (s) According to (6.9), we realize that to get bound
FU (s), we require information from ζ(s+ 1). According to the classical theory
of ζ-function, there is some c0 > 0 such that in the region

σ ≥ −c0/ log |t|, |t| ≥ 4, (6.11)

ζ(s+ 1) has an analytic logarithm with the property

| log ζ(s+ 1)| ≤ log log |t|+O(1).

Therefore, in the region described by (6.11), one has

|FU (s)| ≪ |GU (s)| logk |t|. (6.12)

According to (6.9), the task is reduced to bounding the blue product. Set
δ = max(−σ, 0). Then∣∣∣∣∣∣

∏
p|m

(
1− νp

ps+1

)−1
∣∣∣∣∣∣≪

∏
p|m

(
1 +

kpδ

p

)
≤ exp

∑
p|m

kpδ

p


≤ exp

kW δ
∑
p≤W

1

p
+ kW δ−1 logm

logW


≪ exp(kW δ log logW + kW δ− 1

2 logm).

Therefore, under the choice W = logR, one has

|GU (s)| ≪ exp(2kW δ log logW ), (6.13)

which, plugging into (6.12), implies

|FU (s)| ≪ (log |t|)k exp(2kW δ log logW )

is valid in the region (6.11).

Using this information, we continue the computation of (6.8).
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Deformation of the path of integration Since the integral in (6.8) involves
infinity, we introduce a truncation parameter 2 ≤ T ≤ R100 to turn the path
into a line segment, giving us more flexibility.

By the bound (6.13), we know∫ c+∞

c−i∞
−
∫ c+iT

c−iT

≪ xcc−k(logW )2k
∫ ∞

T

dt

tk+ℓ+1
≪ xcc−k

T k+ℓ
(logW )2k,

so setting c = 1/ log x suggests that the right-hand side is

≪ T−k−ℓ(log x)k(logW )2k.

On the other hand, when δ0 = c0/ log T and T = Rc0 , it follows from∫ −δ0−iT

c−iT

+

∫ c+iT

−δ0+iT

≪ (log x)k

T k+ℓ
(log logR)2k(logR)δ0

and ∫ −δ0+iT

−δ0−iT

≪ x−δ0(log logR)2k(logR)δ0

that
1

2πi

∫ c+i∞

c−i∞
FU (s)

xs

sk+ℓ+1
ds =

1

2πi

∮
(0+)

FU (s)
xs

sk+ℓ+1
ds

+O((log logR)2ek).

(6.14)

Now, the remaining task is to compute the residue integral in (6.14).

Evaluation of the residue When s→ 0, ζ(s+1) ∼ s−1, soDU (s) = skFU (s)
is analytic near s = 0. Therefore, for some small r > 0, one has

1

2πi

∮
(0+)

FU (s)
xs

sk+ℓ+1
ds =

DU (0)

ℓ!
(log x)ℓ

+
∑

1≤q≤ℓ

(log x)ℓ−q

(ℓ− q)!

1

2πi

∮
|s|=r

DU (s)
ds

sq+1
.

For the red integral, notice that when r = 1/ logW , one has∮
|s|=r

DU (s)
ds

sq+1
≪ (log logR)ℓ+5k ≪ε (logR)

ε.

According to (6.10), we also have

DU (0) = GU (0) =
∏
p|m

νp
p− νp

∏
p

(
1− νp

p

)(
1− 1

p

)−k

︸ ︷︷ ︸
H

=
∏
p|m

p

νp

∏
p|m

νp
p− νp

H =
hU (m)

gU (m)
H.

(6.15)
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Therefore, combining the equations between (6.14) and (6.15) with (6.8), we
deduce that

αm = µ(m)
hU (m)H

(logR)k+ℓ

(k + ℓ)!

ℓ!

(
log

R

m

)ℓ

+O{(logR)ε−k−1}. (6.16)

Similarly, for βm, one has

βm = µ(m)
hV (m)H

(logR)k+ℓ

(k + ℓ)!

(ℓ+ 1)!

(
log

R

m

)ℓ+1

+O{(logR)ε−k}. (6.17)

6.3 Asymptotic formulas for MU ,MV

As before, we only give out the details for the computation of MU from (6.16).
The reader can fill in the details for MV by adapting a similar argument using
(6.17).

Plugging (6.16) into (6.2), we get

MU ∼ H2

(logR)2k+2ℓ

[
(k + ℓ)!

ℓ!

]2
(2ℓ)!

∑
m≤R

µ2(m)hU (m)
1

(2ℓ)!

(
log

R

m

)2ℓ

.

(6.18)
For the green part, it follows from (6.7) that for c > 0, one has∑

m≤R

µ2(m)hU (m)
1

(2ℓ)!

(
log

R

m

)2ℓ

=
1

2πi

∫ c+i∞

c−i∞
IU (s)

Rs

s2ℓ+1
ds, (6.19)

where IU (s) is given by the Dirichlet series

IU (s) =
∑
m≥1

µ2(m)hU (m)

ms
= ζk(s+ 1)

∏
p

(
1 +

hU (p)

ps

)(
1− 1

ps+1

)k

︸ ︷︷ ︸
JU (s)

. (6.20)

By reasoning similar to that in the investigation of GU (s), we conclude that
JU (s) is absolutely convergent for σ > − 1

2 . In addition, when s lies in the
region described by (6.11),

IU (s) ≪ (log |t|)k|JU (s)| = O{(log |t|)k}. (6.21)

Thus, when 2 ≤ T ≤ R100, c = 1/ logR, and δ0 = c0/ log T , we can use (6.21)
to rewrite (6.19) into

1

2πi

∫ c+i∞

c−i∞
IU (s)

Rs

s2ℓ+1
ds =

1

2πi

∮ c+iT

c−iT

IU (s)
Rs

s2ℓ+1
ds+O{T−2ℓ(logR)k}

=
1

2πi

∮
(0+)

IU (s)
Rs

s2ℓ+1
ds+O{T−2ℓ(logR)k}

+O

(∫ −δ0−iT

c−iT

+

∫ −δ0+iT

−δ0−iT

+

∫ c+iT

−δ0+iT

)
.
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By an argument similar to that in the treatments for αm, the integrals in the
O-term are

≪ T−2ℓ(logR)k +R−δ0 .

Hence, we can set log T =
√
logR to conclude that

1

2πi

∫ c+i∞

c−i∞
IU (s)

Rs

s2ℓ+1
ds =

1

2πi

∮
(0+)

IU (s)
Rs

s2ℓ+1
ds+O(e−

c0
2

√
logR). (6.22)

Now, set KU (s) = skIU (s), so KU (s) is analytic near s = 0 and KU (s) =
KU (0) +O(|s|), allowing us to compute the brown integral as follows:

1

2πi

∮
(0+)

IU (s)
Rs

s2ℓ+1
ds =

1

2πi

∮
(0+)

KU (s)
Rs

s2ℓ+k+1
ds

=
KU (0)

2πi

∮
|s|=1/ logR

Rs

s2ℓ+k+1
ds+O

(∮
|s|=1/ logR

|ds|
|s|2ℓ+k

)

=
KU (0)

(k + 2ℓ)!
(logR)k+2ℓ +O{(logR)k+2ℓ−1}.

(6.23)

According to (6.20), we know

KU (0) = JU (0) =
∏
p

(1 + hU (p))

(
1− 1

p

)k

=
∏
p

(
1− νp

p

)−1(
1− 1

p

)k

=
1

H

(6.24)

Finally, plugging the equations between (6.19) and (6.24) into (6.18), we see
that MU satisfies

MU ∼ H

(logR)k

[
(k + ℓ)!

ℓ!

]2
(2ℓ)!

(k + 2ℓ)!︸ ︷︷ ︸
γ(k,ℓ)

. (6.25)

Using a similar argument, MV is asymptotic to

MV ∼ H

(logR)k−1

2(2ℓ+ 1)

(2ℓ+ k + 1)(ℓ+ 1)
γ(k, ℓ). (6.26)

We have now obtained all the asymptotic formulas required by the GPY sieve.
It is time to assemble them to study the prime gaps.
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6.4 The GPY theorem

Plugging (6.25) and (6.26) into (6.1), we have

S ∼ N

logN

Hγ(k, ℓ)

(logR)k

{
2k(2ℓ+ 1)

(2ℓ+ k + 1)(ℓ+ 1)
logR− logN

}
. (6.27)

In the previous article, we have set R = N
θ
2−ε, so one has

S = N
Hγ(k, ℓ)

(logR)k
{P (k, ℓ, θ)− 1 +O(ε)},

in which

P (k, ℓ, θ) :=
k(2ℓ+ 1)

(2ℓ+ k + 1)(ℓ+ 1)
θ.

When ℓ = 0, we have

P (k, 0, θ) =
k

k + 1
θ < θ ≤ 1,

so plugging the k-dimensional sieve parameter into the GPY sieve does not help
us establish bounded gaps between primes. Consequently, the parameter ℓ in
the work of Goldston, Pintz, and Yıldırım is indispensable.

Notice that

P (k, ℓ, θ) =
k(2ℓ+ 1)

(2ℓ+ k + 1)(2ℓ+ 2)
2θ

= 2θ

(
1− 2ℓ+ 1

2ℓ+ k + 1

)(
1− 1

2ℓ+ 2

)
,

so we have
P (k, ℓ, θ) < lim

ℓ→∞
lim
k→∞

P (k, ℓ, θ) = 2θ.

According to the definition of limit, we know that when θ > 1
2 , there exists k, ℓ

such that P (k, ℓ, θ) > 1, so S > 0 for large N . Therefore, we obtained the first
breakthrough concerning the bounded gaps between primes:

Theorem 6.1 (Goldston, Pintz, and Yıldırım). If the primes have level of
distribution θ > 1

2 , then there exists some C(θ) ≥ 2 such that

lim inf
n→∞

(pn+1 − pn) ≤ C(θ).

6.5 Conclusion

In this article, we estimated αm, βm,MU ,MV via contour integration, thereby
obtaining the analytic form for the GPY sieve (6.27).

The original derivation of the GPY sieve in their paper [11] did not diagonalize
MU ,MV , so the authors had to interact with double complex integrals. Al-
though Friedlander and Iwaniec diagonalized MU ,MV in their book Opera de
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Cribro [10, §7.13], they did not specify λd at the beginning but instead deter-
mined λd from a choice of αm, which is not intuitive. Therefore, the derivation
of the GPY sieve given in the present series is simpler than that of the original
paper and more motivating than that in Friedlander and Iwaniec’s book.

One may think the obstruction θ > 1
2 is caused by the specific choice (6.6). In

the next article, we will derive the GPY sieve under a more general choice λd

λd = µ(d)P

(
logR/d

logR

)
to further explore the connection between the GPY sieve and the level of dis-
tribution θ. Please stay tuned for updates!

Aug 6, 2022
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7 Limitation of the GPY sieve

In the last three articles, we have constructed the GPY sieve

S =
∑

N<n≤2N

 ∑
1≤i≤k

χP(n+ hi)− 1

 ∑
d|Q(n),d≤R

λd

2

, (7.1)

and, by choosing λd to be the optimal parameter for the (k + ℓ)-dimensional
Selberg sieve

λd = µ(d)

(
logR/d

logR

)k+ℓ

, (7.2)

successfully established the existence of infinitely many pairs of primes with
bounded distance, provided that the primes are distributed at a level θ > 1

2 .

In this article, we consider a generalization of the GPY sieve by replacing (7.2)
with

λd = µ(d)P

(
logR/d

logR

)
, (7.3)

where P (x) is a real-valued, 1-bounded smooth function on [0, 1] such that
P (1) = 1 and P (x) = O(xk) as x → 0. This construction allows us to explore
further the relationship between the GPY sieve and the condition θ > 1

2 . The
first person to consider such a generalization is Kannan Soundararajan [20].
Because the main purpose of his paper was to survey the GPY sieve, he only
stated the result of plugging (7.3) into (7.1) without proof, so the present article
can serve as a supplement to his survey paper.

7.1 A generalized GPY sieve

In §5, we have converted (7.1) into a problem of inequality:

kMV (k,N, θ) > MU (k,N, θ) logN ∀N ≥ N0, (7.4)

where MU and MV are quadratic forms of λd defined in (5.5) and (5.11).

In §6, we plugged (7.2) into MU ,MV , which indicated that for each θ > 1
2 , we

can find k ∈ N for which (7.4) holds. Thus, our subsequent task is to carry
out the computations in (6) with (7.3) instead. As a first step, we compute the
asymptotic formulas for αm, βm defined in (6.3) and (6.4).

Remark. By Stone–Weierstrass, we assume P is a polynomial.

Asymptotic expansion of αm, βm By our assumptions on P (x), there exists
a sequence of finite support {aℓ}ℓ≥0 such that

P (x) =
∑
ℓ≥0

aℓx
k+ℓ, (7.5)
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so by reusing the computations in §6.2, we have

αm ∼ µ(m)
hU (m)H

(logR)k

∑
ℓ≥0

aℓ
(k + ℓ)!

ℓ!

(
logR/m

logR

)ℓ

.

Using the differentiation rules for power functions, the right-hand side becomes

αm ∼ µ(m)
hU (m)H

(logR)k
P (k)

(
logR/m

logR

)
, (7.6)

and by similar reasoning,

βm ∼ µ(m)
hV (m)H

(logR)k−1
P (k−1)

(
logR/m

logR

)
. (7.7)

Asymptotic formulas for MU ,MV Let {bm}m≥0 be a sequence of finite
support such that

[P (k)(x)]2 =
∑
m≥0

bmx
m. (7.8)

Then by combining (7.6) with the methods in §6.3, we deduce that

MU ∼ H

(logR)k

∑
m∈B

bm · m!

(k +m)!

=
H

(logR)k

∑
m∈B

bm · Γ(m− 1)

Γ(k +m− 1)

=
H

(logR)k
1

(k − 1)!

∑
m∈B

bm
Γ(k)Γ(m− 1)

Γ(k +m− 1)
.

Finally, using the beta-gamma relation, one finds that

MU ∼ H

(logR)k

∫ 1

0

xk−1

(k − 1)!
[P (k)(1− x)]2dx. (7.9)

Similarly, by using (7.7), we have

MV ∼ H

(logR)k−1

∫ 1

0

xk−2

(k − 2)!
[P (k−1)(1− x)]2dx. (7.10)

With these asymptotic formulas ready, we move on to analyzing the implications
of (7.3) in number theory.
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7.2 Bounded gaps and integral inequality

Plugging (7.9), (7.10), and R = N
θ
2−ε into (7.4), we see that (7.4) holds if and

only if ∫ 1

0

xk−2

(k − 2)!
[P (k−1)(1− x)]2dx >

2

θk

∫ 1

0

xk−1

(k − 1)!
[P (k)(1− x)]2dx

Now, set Q(x) = P (k−1)(x). Then Q(x) is a nonconstant polynomial with
Q(0) = 0. If Q is given, then P can be determined by repeated integrations.
Thus, the existence of P for which (7.4) holds under (7.3) is equivalent to the
existence of Q such that∫ 1

0

xk−2[Q(1− x)]2dx >
2

θk(k − 1)

∫ 1

0

xk−1[Q′(1− x)]2dx. (7.11)

The work of Goldston, Pintz, and Yıldırım [11] indicates that when θ > 1
2 , (7.11)

holds for some k under the choice Q(x) = (k+ℓ)!
ℓ! xℓ, so an interesting question

would be whether there is a choice of P that allows (7.11) to hold for some k
and some θ ≤ 1

2 . If the answer is affirmative, then we can deduce bounded gaps
directly from the unconditional Bombieri–Vinogradov theorem.

Unfortunately, θ > 1
2 is a necessity to (7.11). In [20], Soundararajan wrote

“ If we set Q(y) = P (k−1)(y), then Q is a polynomial, not identically zero, with
Q(0) = 0; for such polynomials Q we claim that the unfortunate inequality∫ 1

0

xk−2

(k − 2)!
Q(1− x)2dx <

4

k

∫ 1

0

xk−1

(k − 1)!
Q′(1− x)2dx

holds. The reader can try her hand at proving this. ”

Now, we give a detailed proof of this inequality.

7.3 Proof of Soundararajan’s inequality

By definition of Q, we know

Q(1− x) = Q(1− x)−Q(1− 1) =

∫ 1

x

Q′(1− u)du,

so by Cauchy–Schwarz, we know for α > 1 that

[Q(1− x)]
2 ≤

∫ 1

x

uα[Q′(1− u)]2du

∫ 1

x

t−αdu

=

∫ 1

x

uα[Q′(1− u)]2du
1− x1−α

1− α
.
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Plugging this into the left-hand side of (7.11), we get∫ 1

0

xk−2[Q(1− x)]2dx ≤
∫ 1

0

uα[Q′(1− u)]2
∫ u

0

xk−2 · 1− x1−α

1− α
dxdu

=

∫ 1

0

uk−1[Q′(1− u)]2
1

α− 1

[
u

k − α
− uα

k − 1

]
︸ ︷︷ ︸

F (u)

du.

Therefore, the remaining task is to show that for u ∈ [0, 1],

F (u) ≤ 4

k(k − 1)
.

Maximum of F Differentiating gives

(α− 1)F ′(u) =
1

k − α
− αuα−1

k − 1
, F ′′(u) = − α(α− 1)uα−2

(α− 1)(k − 1)
< 0,

so F attains its maximum at all zeros of F ′. After case-by-case analysis, we
conclude that

Fmax =

{
[α(k − α)]−1 k > α+ 1,

[(k − α)(k − 1)]−1 k ≤ α+ 1.

Intuitively, this maximum is minimized when α and k − α are close to each
other. Plugging in α = 1

2 (k + 1), we have{
k > α+ 1 ⇒ Fmax = 4/(k + 1)(k − 1) < 4/k(k − 1),

k ≤ α+ 1 ⇒ k = 2 ⇒ Fmax = 2 = 4/2(2− 1).

Finally, using the continuity of F and F (0) = 0, we obtain the strict inequality
in Soundararajan’s paper:

Theorem 7.1 (Soundararajan, 2007). Let Q : [0, 1] → R be nonconstant and
continuously differentiable such that Q(0) = 0. Then for k ≥ 2,∫ 1

0

xk−2[Q(1− x)]2dx <
4

k(k − 1)

∫ 1

0

xk−1[Q′(1− x)]2dx.

Combining this theorem with (7.11), we see that θ > 1
2 is sufficient and necessary

for the GPY sieve to establish bounded gaps between primes.
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7.4 Conclusion

In this article, we generalized the GPY sieve by replacing the choice of λd
with (7.3), thereby converting the prime gap problem into an inequality (7.11)
concerning Q(x) = P (k−1)(x). Finally, by differential calculus and Cauchy–
Schwarz inequality, we proved that θ > 1

2 is a necessary and sufficient condition
for (7.11) to hold for some Q.

So far, we realize that the prototypical GPY sieve is incapable of demonstrating
bounded gaps between primes unconditionally. Our analysis also indicated two
directions to address this limitation:

1. Improving Bombieri–Vinogradov theorem: This is exactly how Yitang
Zhang [23] got lim infn→∞(pn+1 − pn) < 7× 107.

2. Changing the structure of λd: By making λd depend on more variables,
James Maynard [14] obtained lim infn→∞(pn+1 − pn) ≤ 600.

These two results will be expounded in subsequent articles. Please stay tuned
for updates!

Aug 28, 2022
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8 The 70 million bound of Zhang

Through the analysis of the previous article, we found that even if we replace
(7.2) with the more general (7.3), the propotypical GPY sieve is capable of
producing bounded gaps between primes only under the assumption θ > 1

2 and
have also indicated two possible ways to address this limitation. Today, we
introduce the first approach that Yitang Zhang [23] took. He proved in 2014
that

Theorem 8.1 (Zhang, 2014). Denote by pn the n’th prime. Then

lim inf
n→∞

(pn+1 − pn) < 7× 107. (8.1)

8.1 Smoothed GPY sieve

In the prototypical GPY sieve, we only required λd to vanish on d > R. Zhang,
building on this, required λd = 0 when d has a large prime factor. Since an
integer free of prime factors > z is z-smooth, Zhang’s modified sieve is also
known as the smoothed GPY sieve. Now, let P (z) be the product of primes
≤ z. Then Zhang’s sieve can be written as

S =
∑

N<n≤2N

 ∑
1≤i≤k

χP(n+ hi)− 1

 ∑
d|(P (z),Q(n))

λd

2

, (8.2)

in which hi, χP(n), Q(n) are defined in §4 and λd still takes (7.2), the parameter
corresponding to the (k + ℓ)-dimensional sieve. By computations in §5, we see
that when

gi(d) =
µ2(d)

d

∏
p|d

(νp + 1− i), hi(d) = µ2(d)
∏
p|d

gi(p)

1− gi(p)
, (8.3)

αi(m, z) =
∑

d≤R/m
d|P (z)
(d,m)=1

gi(md)λmd, Mi =
∑
m≤R
m|P (z)

α2
i (m, z)

hi(m)
, (8.4)

the sieve (8.2) can be rewritten into

S = [1 + o(1)]
N

logN
(kM2 −M1 logN) +O(R2 log3k R) +O(E), (8.5)

where
E =

∑
1≤i≤k

∑
d≤R2

d|P (z)

3ω(d)
∑

1≤c≤d
Q(c−hi)≡0(d)

(c,d)=1

|E1(N ; d, c)|, (8.6)
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E1(N ; d, c) =
∑

N<p≤2N
p≡c(d)

1− 1

φ(d)

∫ 2N

N

du

log u
. (8.7)

To deduce (8.1) from the smoothed GPY sieve, Zhang showed that under the
smoothness condition, the range of Bombieri–Vinogradov theorem can be en-
larged.

Theorem 8.2 (Zhang). When ϖ = 1
1168 , R = N

1
4+ϖ, z = Nϖ, (8.6) satisfies

E ≪ N(logN)−A.

Remark. Because the derivation of this result invokes deep results in algebraic
geometry with which the author is not familiar, the proof is omitted.

According to the blue term in (8.5), (8.1) will follow if one can find an appro-
priate k and λd such that kM2 > M1 logN . In the ordinary GPY sieve, we can
compute the asymptotic formulas for Mi directly. Still, due to complications
coming from smoothness, we can only do the next best thing: finding an upper
bound for M1 and a lower bound for M2.

8.2 Preliminary treatments for Mi

Define

αi(m) =
∑

d≤R/m
(d,m)=1

gi(md)λmd, M∗
i =

∑
m≤R

α2
i (m)

hi(m)
. (8.8)

Then these are terms arising from the prototypical GPY sieve, so it follows from
computations in §6 that

αi(m) ∼ µ(m)
hi(m)H

(logR)k+ℓ

(k + ℓ)!

(ℓ+ i− 1)!

(
log

R

m

)ℓ+i−1

, (8.9)

M∗
1 ∼ γ(k, ℓ)H

(logR)k
, M∗

2 ∼ 2(2ℓ+ 1)

(2ℓ+ k + 1)(ℓ+ 1)

γ(k, ℓ)H

(logR)k−1
, (8.10)

in whichH and γ(k, ℓ) are defined in (6.15) and (6.25). BecauseM∗
i andMi have

very similar structures, it is reasonable that Mi should be well approximated
by (8.10). Be definition of P (z) and the configuration in Theorem 8.2, we know

m > N1/4 ∧m|P (z) ⇒ d|P (z) ⇒ αi(m, z) = αi(m),

so one has the following decomposition:

|Mi −M∗
i | ≤

∑
m≤N1/4

α2
i (m)

hi(m)︸ ︷︷ ︸
T1i

+
∑

m≤N1/4

m|P (z)

α2
i (m, z)

hi(m)

︸ ︷︷ ︸
T2i

+
∑

N1/4<m≤R
m∤P (z)

α2
i (m)

hi(m)

︸ ︷︷ ︸
T3i

. (8.11)
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Therefore, to give an upper bound for (8.11), it suffices to estimate T1i, T2i, T3i
individually. We only give out details for the treatments in the i = 1 case. The
reader should be able to supply the details for the i = 2 case.

Remark. Since this article aims to emphasize the main idea, we have delib-
erately omitted the error terms arising from the asymptotic formulas. A full
justification is possible by adapting the methods in §6.

8.3 Estimates of T11, T21, T31

Plugging (8.9) into T11, we have

T11 ∼ γ(k, ℓ)H2

(logR)2k+2ℓ

(k + 2ℓ)!

(2ℓ)!

∑
m≤N1/4

h1(m)

(
log

R

m

)2ℓ

. (8.12)

By Perron’s formula and standard properties of ζ(s), one has∑
m≤x

h1(m) ∼ (log x)k

k!

∏
p

(1 + h1(p))

(
1− 1

p

)k

=
1

H

(log x)k

k!
. (8.13)

Therefore, by partial summation, one obtains∑
m≤N1/4

h1(m)

(
log

R

m

)2ℓ

∼ 1

H

∫ N1/4

1

(
log

R

x

)2ℓ
(log x)k−1

(k − 1)!x
dx︸ ︷︷ ︸

u=log x/ logR

=
(logR)2ℓ+k

(k − 1)!H

∫ (1+4ϖ)−1

0

(1− u)2ℓuk−1du

<
(logR)2ℓ+k

(k − 1)!H

∫ (1+4ϖ)−1

0

uk−1du.

Now, define

δ1 = k

∫ (1+4ϖ)−1

0

uk−1du = (1 + 4ϖ)−k, (8.14)

so (8.12) becomes

T11 ≤ [1 + o(1)]δ1

(
k + 2ℓ

k

)
γ(k, ℓ)H

(logR)k
. (8.15)

For T21, we first estimate α1(m, z). Let P ′ be the product of primes in (z,R].
Then

α1(m, z) =
∑

d≤R/m
(m,d)=1

g1(md)λmd

∑
q|(d,P ′)

µ(q)

=
∑
q|P ′

µ(q)
∑

t≤R/mq
(t,mq)=1

g1(mqt)λmqt =
∑

q≤R/m
q|P ′

µ(q)α1(mq).
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When q ≤ R divides P ′, it follows from

zω(q) < q ≤ R

that

ω(q) <
logR

log z
=

1/4 +ϖ

ϖ
= 293,

so we have

h1(q) = g1(q)
∏
p|q

(
1− νp

p

)−1

= g1(q)

{
1 +O

(
1

z

)}
. (8.16)

Now, by (8.9), we know

|α1(m, z)| ∼
H

(logR)k+ℓ

(k + ℓ)!

ℓ!

∑
q≤R/m
q|P ′

h1(mq)

(
log

R

mq

)ℓ

.

Since m|P (z), m and q are coprime, so h1(mq) = h1(m)g1(q). Combining this
with (8.16), we deduce that

|α1(m, z)| ∼
h1(m)H

(logR)k+ℓ

(k + ℓ)!

ℓ!

∑
q≤R/m
q|P ′

g1(q)

(
log

R

mq

)ℓ

≤ h1(m)H

(logR)k+ℓ

(k + ℓ)!

ℓ!

(
log

R

m

)ℓ ∑
q≤R
q|P ′

g1(q).

For the green term, it follows from ω(q) ≤ 292 that

∑
q≤R
q|P ′

g1(q) =
∑

0≤v≤292

∑
q|P ′

ω(q)=v

g1(q) ≤
∑

0≤v≤292

1

v!

 ∑
z<p≤R

g1(p)

v

≤
∑

0≤v≤292

1

v!

 ∑
z<v≤R

k

p

v

∼
∑

0≤v≤292

(k log 293)v

v!
=: δ2. (8.17)

Comparing this to (8.9), we conclude that

|αi(m, z)| ≤ [δ1 + o(1)]αi(m).

Plugging this into T21, we get

T21 ≤ [1 + o(1)]δ22
∑

d≤N1/4

α2
1(m)

h1(m)︸ ︷︷ ︸
T11

≤ [1 + o(1)]δ1δ
2
2

(
k + 2ℓ

k

)
γ(k, ℓ)H

(logR)k
. (8.18)
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For T31, plugging (8.9) in gives

T31 ≤ γ(k, ℓ)H2

(logR)2k
(k + 2ℓ)!

(2ℓ)!

∑
m≤R
m∤P (z)

h1(m). (8.19)

For the purple part, because m ∤ P (z) ⇒ (m,P ′) > 1, it is bounded by∑
m≤R
m∤P (z)

h1(m) ≤
∑
m≤R

h1(m)
∑

p|(m,P ′)

1 =
∑

z<p≤R

∑
m≤R
p|m

h1(m)

=
∑

z<p≤R

h1(p)
∑

t≤N1/4

(t,p)=1

h1(t).

For large prime p, h1(p) ≤ k
p−k ∼ k

p , so combining with (8.13), one has

∑
m≤R
m∤P (z)

h1(m) ≤ [1 + o(1)]k log 293
∑

t≤N1/4

h1(t) ∼
δ1k log 293

k!

(logR)k

H
.

Finally, plugging this into (8.19) gives

T31 ≤ [1 + o(1)]k log 293

(
k + 2ℓ

k

)
γ(k, ℓ)H

(logR)k
. (8.20)

Having estimated T11, T21, T31, it is time to synthesize these results to produce
an upper bound for M1.

8.4 Bounds for M1 and M2

Plugging (8.15), (8.18), and (8.20) into (8.11), we realize that under

κ1 = δ1(1 + δ22 + k log 293)

(
k + 2ℓ

k

)
, (8.21)

we have

M1 ≤ [1 + κ1 + o(1)]
γ(k, ℓ)H

(logR)k
=:M ′

1. (8.22)

By an argument similar to that in §8.3, we can obtain upper bounds for T12, T22, T32
to obtain a lower bound for M2. That is, under

κ2 = δ1(1 + 4ϖ)(1 + δ22 + k log 293)

(
k + 2ℓ+ 1

k − 1

)
, (8.23)

we have

M2 ≥ [1 + o(1)]
1− κ2
1 + κ1

2(2ℓ+ 1) logR

(2ℓ+ k + 1)(ℓ+ 1)
M ′

1. (8.24)
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8.5 Bounded gaps between primes

Now, let’s see where the number 7× 107 comes from.

According to (8.22) and (8.24), we see that the blue term in (8.5) satisfies

kM2 −M1 logN ≥ [s− 1 + o(1)]M ′
1 logN,

where

s =
1− κ2
1 + κ1

k(2ℓ+ 1)(1 + 4ϖ)

(2ℓ+ k + 1)(2ℓ+ 2)
. (8.25)

Hence, we can win by choosing k, ℓ that makes s > 1. By Stirling’s approxima-
tion, Zhang showed that when

k = 3.5× 106, ℓ = 180, ϖ =
1

1168
,

one has 0 < κ1 < e−1200, 0 < κ2 < e20κ1, so by numerical computation,

s >
1− κ2
1 + κ1

× 1.0005 >
1− e−1980

1 + e−1200
× (1 + e−8) > 1.

According to the scheme in §4, the remaining task is to find an admissible tuple
H = {h1, h2, . . . , hk} of size k = 3.5× 106 so that

lim inf
n→∞

(pn+1 − pn) ≤ max
1≤i<j≤k

|hi − hj | (8.26)

Admissible tuple of size k Let h1 < h2 · · · < hk be primes ≥ k. Then for
p > k, νp ≤ degQ = k < p. Because

p ≤ k ⇒ Q(0) = h1h2 · · ·hk ̸≡ 0 (mod p),

we see that νp < p for p ≤ k as well. Hence, H = {h1, . . . , hk} is admissible.

This reasoning tells us that when V > k is a number satisfying

π(V )− π(k),

we can choose h1, . . . , hk such that

max
1≤i<j≤k

|hi − hj | = hk − h1 < V.

Because it is inefficient to count the number of primes directly, we invoke a
quantitative form of the prime number theorem due to Rosser and Schoenfeld
[17, p. 69]: for x ≥ 60,

x

log x
< π(x) <

x

log x

(
1 +

2

log x

)
.
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As a result, when V = 7× 107, one has

π(V )− π(k) >
7× 107

7 log 10 + log 7
− 3.5× 106

6 log 10 + log 3.5

×
(
1 +

2

6 log 10 + log 3.5

)
> 3.8× 106 − 2.4× 105 × 1.2

> 3.5× 106 = k.

Finally, combining this with (8.26) and (8.5), we obtain Theorem 8.1.

8.6 Conclusion

In this article, we made unconditional the result of Goldston, Pintz, and Yıldırım
by smoothing the GPY sieve. Although we did not obtain asymptotic formulas
for M1 and M2 under the smoothness assumption, we obtained a nice upper
bound for M1 and a lower bound for M2 by relating them to the corresponding
terms M∗

1 ,M
∗
2 in the unsmoothed sieve. Finally, we determined a possible k for

s > 1 to hold, and by numerical computation with the Rosser–Schoenfeld prime
number theorem, we deduce the inequality (8.1).

Although Zhang’s paper appeared in publication in 2014, it had already shocked
the mathematical community in April 2013. However, if Zhang were late for a
few more months, his name would not be as well-known as today. Because in
November 2013, James Maynard announced something much stronger:

lim inf
n→∞

(pn+1 − pn) ≤ 600. (8.27)

According to his paper [14], Maynard began his investigation into prime gaps
before Zhang’s announcement of (8.1) and used an entirely different approach.
By replacing λd with λd1,d2,...,dk

that takes in vectors, Maynard deduced his
bound (8.27) via only the Bombieri–Vinogradov theorem (θ = 1

2 ). His methods
will be expounded in the subsequent articles.

Sept 7, 2022
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9 Maynard’s dimensional reduction strike I

After Yitang Zhang, many mathematicians became interested in the problem of
prime gaps. In the autumn of 2013, the Polymath8 project initiated by Terence
Tao and others improved Zhang’s 70 million bound to

lim inf
n→∞

(pn+1 − pn) ≤ 4680. (9.1)

In November of the same year, by making structural refinements to the GPY
sieve, James Maynard [14] replaced the right-hand side of (9.1) with 600. In
addition, he showed that there exists some fixed C > 0 such that for all m ∈ N,

lim inf
n→∞

(pn+m − pn) < Cm3e4m.

Zhang obtained his 70 million bound by showing that the primes are equidis-
tributed in arithmetic progressions with smooth moduli at the level of θ =
1
2 +

1
584 . In contrast, Maynard’s 600 bound is only a consequence of the classical

Bombieri–Vinogradov theorem (i.e. θ = 1
2 for all moduli). This is because the

latter took the second route indicated in §7.4. Now, we will see how Maynard
achieved this refinement.

9.1 GPY sieve and the dimensional reduction strike

In the study of Goldston–Pintz–Yıldırım and Zhang, the GPY sieve took the
form of

S =
∑
n∈I

 ∑
1≤m≤k

χP(n+ hm)− ρ

(∑
d∈Dn

λd

)2

︸ ︷︷ ︸
w2

n

, (9.2)

where I is some interval of integers, λd is the Selberg sieve parameter for the
(k + ℓ)-dimensional sieve, and ρ = 1. The original sieve problem is naturally
a k-dimensional problem, so the heart of the GPY–Zhang approach is to first
convert a low-dimensional problem to a high-dimensional version and then solve
the problem via a higher-dimensional sieve, which we call the “dimensional
increment strike.” On the contrary, Maynard’s idea is more like a “dimensional
reduction strike”:1 He replaced wn in (9.2) with

wn =
∑

d1,...,dk

di|(n+hi)∀i

λd1,...,dk
, (9.3)

allowing us to divide a conquer a k-dimensional sieve problem by k one-dimensional
sieves. It is this reason that allows Maynard to deduce bounded gaps between
primes without the knowledge beyond Bombieri–Vinogradov.

1These terms are borrowed from the science fiction Three-Body Problem by Cixin Liu.
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Remark. In the GPY–Zhang sieve, we required λd to vanish when d > R or
d is not squarefree, so we impose a similar constraint for the new parameter in
(9.3): i.e. λd1,...,dk

vanishes when d1d2 · · · dk is not squarefree or d1d2 · · · dk > R.

9.2 Construction of the dimensional reduction sieve

Combining (9.2) with (9.3), we realize that to obtain asymptotics for S, it

suffices to compute S1, S
(m)
2 :

S1 =
∑
n∈I

w2
n, S

(m)
2 =

∑
n∈I

χP(n+ hm)w2
n. (9.4)

In the GPY–Zhang sieve, I = (N, 2N ], but in Maynard’s version, for technical
convenience, we want each n ∈ I to have the property that n + hm is free of
small prime factors. Specifically, we want n to satisfy

D0 = log log logN, W =
∏

p≤D0

p, (n+ hm,W ) = 1 ∀n ∈ I ∀m. (9.5)

Remark. We leave D0 unspecified until we compute the main term of S
(m)
2 .

Because we also require H = {h1, . . . , hk} to be admissible, for each p ≤ D0

there is some 0 ≤ ap < p such that

Q(ap) = (ap + h1) · · · (ap + hk) ̸≡ 0 (mod p) ∀p ≤ D0. (9.6)

By the Chinese remainder theorem, there is some 0 ≤ v0 < W such that

v0 ≡ ap (mod p) ∀p ≤ D0,

so we set
I = {n ∈ (N, 2N ] : n ≡ v0 (mod W )}

in (9.4) to perform subsequent computations.

9.3 Preliminary treatments for S1

In analytic number theory, miracles happen after interchanging the order of
summation. To transform S1 into an approachable form, we expand w2

n, so

S1 =
∑′

d1,...,dk
e1,...,ek

λd1,...,dk
λe1,...,ek

∑
N<n≤2N
n≡v0(W )

[di,ei]|(n+hi)∀i

1, (9.7)

in which
∑′

sums over terms under the additional requirement that [d1, e1], . . . , [dk, ek],W
are pairwise coprime. This is because the blue term will otherwise vanish. From
the coprimality condition, we can use the Chinese remainder theorem to deter-
mine a unique 0 ≤ v1 < W [d1, e1] · · · [dk, ek] such that the range of the blue sum
is equivalent to

n ≡ v1 (mod W [d1, e1] · · · [dk, ek]),
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allowing us to convert (9.7) into

S1 =
N

W

∑′

d1,...,dk
e1,...,ek

λd1,...,dk
λe1,...,ek

[d1, e1] · · · [dk, ek]︸ ︷︷ ︸
Q1

+E1. (9.8)

In particular, if |λd1,...,dk
| ≤ λmax and τk(n) is the number of ways to write n

as a product of k integers, then the error term E1 satisfies

E1 ≪ λ2max

∑
d≤R2

µ2(d)τk(d)

2

≪ λ2maxR
2(logR)2k, (9.9)

so our remaining task is to transform the quadratic form Q1 in (9.8).

9.4 Transformation of Q1

Although our “dimensional reduction” sieve is very different from the original
Selberg sieve, we still hope to handle the gigantic term in (9.8). By [a, b](a, b) =
ab and the convolution properties of φ(n), one has

Q1 =
∑′

d1,...,dk
e1,...,ek

λd1,...,dk
λe1,...,ek

d1 · · · dke1 · · · ek
(d1, e1) · · · (dk, ek)

=
∑′

d1,...,dk
e1,...,ek

λd1,...,dk
λe1,...,ek

d1 · · · dke1 · · · ek

∑
u1,...,uk

ui|(di,ei)∀i

∏
1≤i≤k

φ(ui)

=
∑

u1,...,uk

∏
i

φ(ui)
∑′

d1,...,dk
e1,...,ek

ui|(di,ei)∀i

λd1,...,dk
λe1,...,ek

d1 · · · dke1 · · · ek
. (9.10)

We have required earlier that λd1,...,dk
to vanish when d1d2 . . . dk is squarefree,

which is equivalent to saying d1, . . . , dk are individually squarefree and pairwise
coprime, so the additional constraints in

∑′
are equivalent to (di, ej) = 1 for

all i ̸= j. Therefore, it follows from Möbius inversion that∑′

d1,...,dk
e1,...,ek

ui|(di,ei)∀i

=
∑

d1,...,dk
e1,...,ek

ui|(di,ei)∀i

∑
s1,2,··· ,sk,k−1

si,j |(di,ej)∀i̸=j

∏
1≤i,j≤k

i̸=j

µ(si,j)

=
∑

s1,2,··· ,sk,k−1

∏
1≤i,j≤k

i̸=j

µ(si,j)
∑

d1,...,dk
e1,...,ek

ui|(di,ei)∀i
si,j |(di,ej)∀i̸=j

. (9.11)
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Plugging this into (9.10), we get

Q1 =
∑

u1,...,uk

∏
i

φ(ui)
∑

s1,2,··· ,sk,k−1

∏
i,j
i̸=j

µ(si,j)
∑

d1,...,dk
e1,...,ek

ui|(di,ei)∀i
si,j |(di,ej)∀i̸=j

λd1,...,dk
λe1,...,ek

d1 · · · dke1 · · · ek

=
∑

u1,...,uk

∏
i

φ(ui)
∑

s1,2,...,sk,k−1

(si,j ,W )=1∀i̸=j

∏
i,j
i̸=j

µ(si,j)
∑

d1,...,dk
e1,...,ek

ai|di,bi|ei∀i

λd1,...,dk
λe1,...,ek

d1 · · · dke1 · · · ek
,

(9.12)

in which aj = uj
∏

i
i̸=j

sj,i and bj = uj
∏

i
i̸=j

si,j . To prevent (9.12) from becom-

ing more formidable, we make some simplifications in the red sum.

Diagonalization and the parameter yr1,...,rk Define

αr1,...,rk =
∑

d1,...,dk

ri|di∀i

λd1,...,dk

d1 · · · dk
. (9.13)

Then by Möbius inversion, one has

λd1,...,dk

d1 · · · dk
=

∑
r1,...,rk
di|ri∀i

∏
i

µ

(
ri
di

)
αr1,...,rk

=
∏
i

µ(di)
∑

r1,...,rk
di|ri∀i

∏
i

µ(ri)αr1,...,rk .

Building on (9.13), we introduce an extra definition for the sake of cleanliness:

yr1,...,rk = µ(r1)φ(r1) · · ·µ(rk)φ(rk)αr1,...,rk ,

so we have

yr1,...,rk =
∏
i

µ(ri)φ(ri)
∑

d1,...,dk

ri|di∀i

λd1,...,dk

d1 · · · dk
(9.14)

and
λd1,...,dk

=
∏
i

diµ(di)
∑

r1,...,rk
di|ri∀i

yr1,...,rk∏
i φ(ri)

. (9.15)

Remark. From (9.14), we see that yr1,...,rk vanishes when r1r2 · · · rk exceeds
R, has square factor, or not coprime to W . Additionally, we see that redefining
λd1,...,dk

by (9.15) with the aforementioned constraints on the support of yr1,...,rk
also ensures the support of λd1,...,dk

to fulfilled the conditions mentioned in an
earlier remark.
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Now, plugging (9.14) into (9.12) gives

Q1 =
∑

u1,...,uk

∏
i

µ2(ui)

φ(ui)

∑
s1,2,...,sk,k−1

(si,j ,W )=1∀i̸=j

∏
i,j
i̸=j

µ(si,j)

φ2(si,j)
ya1,...,ak

yb1,...,bk . (9.16)

According to (9.5), the condition (sij ,W ) = 1 implies either si,j = 1 or si,j >
D0. Let Q

′
1 be the subcollection of terms in Q1 with si,j > D0. Then by (9.16),

we know when |yr1,...,rk | ≤ ymax, one always has

Q′
1 ≪ y2max

 ∑
u≤R

(u,W )=1

µ2(u)

φ(u)


k∑

s≥1

µ2(s)

φ(s)

k(k−1)−1 ∑
s′>D0

µ2(s′)

φ(s′)

≪ y2max

(
φ(W )

W
logR

)k
1

D0
≪ y2maxφ

k(W )(logR)k

W kD0
.

Therefore, (9.16) is reduced to

Q1 =
∑

u1,...,uk

y2u1,...,uk∏
i φ(ui)

+O

{
y2maxφ

k(W )(logR)k

W kD0

}
. (9.17)

Now is the time to assemble all the results we obtained thus far.

9.5 Asymptotic formula for S1

By (9.15), we can express λmax in terms of ymax:

λmax ≪ ymax

∏
i

di
φ(di)

∑
t1,...,tk≥1∏
i ti≤R/

∏
i di

(ti,di)=1
(ti,tj)=1∀i̸=j

∏
i

µ2(ti)

φ(ti)

= ymax

∏
p|

∏
i di

(
1 +

1

p− 1

) ∑
t≤R/

∏
i di

(t,
∏

i di)=1

µ2(t)τk(t)

φ(t)

≤ ymax

∑
r|

∏
i di

µ2(r)

φ(r)

∑
t≤R/r
(t,r)=1

µ2(t)τk(t)

φ(t)

≤ ymax

∑
u≤R

µ2(u)τk(u)

φ(u)
≪ ymax(logR)

k.

Plugging this into (9.9), we have

E1 ≪ y2maxR
2(logR)4k ≪ y2maxNφ

k(W )(logR)k

W k+1D0
.
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Combining this with (9.8) and (9.17), we obtain

S1 =
N

W

∑
u1,...,uk

y2u1,...,uk∏
i φ(ui)︸ ︷︷ ︸

T1

+O

{
y2maxNφ

k(W )(logR)k

W k+1D0

}
, (9.18)

which is precisely the formula in [14, Lemma 5.1]:

Let

yr1,...,rk =
( k∏
i=1

µ(ri)φ(ri)
) ∑

d1,...,dk

ri|di∀i

λd1,...,dk∏k
i=1 di

.

Let ymax = supr1,...,rk |yr1,...,rk |. Then

S1 =
N

W

∑
r1,...,rk

y2r1,...,rk∏k
i=1 φ(ri)

+O
(y2maxφ(W )kN(logR)k

W k+1D0

)
.

9.6 Preliminary treatments for S
(m)
2

In the GPY–Zhang sieve, the treatments for the corresponding S1 and S
(m)
2 are

very similar, so we skipped the derivation for S
(m)
2 in §6 and §8. However, in

Maynard’s “dimensional reduction” sieve, the difference between the treatments

for S1 and S
(m)
2 is worth an expanded account. According to Dirichlet’s theorem,

an arithmetic progression contains infinitely many primes if and only if the
first term is coprime to the common difference, so interchanging the order of
summation in (9.4) gives

S
(m)
2 =

∑′

d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dk
λe1,...,ek

∑
N<n≤2N
n≡v0(W )

[di,ei]|(n+hi)∀i

χP(n+ hm). (9.19)

To continue expanding the green part, we invoke the prime number theorem on
arithmetic progressions, so when we define

E(N, q) = 1 + max
(a,q)=1

∣∣∣∣∣∣∣∣
∑

N<n≤2N
(a,q)=1

χP(n)−
1

φ(q)

∫ 2N

N

du

log u

∣∣∣∣∣∣∣∣ ,
one has

S
(m)
2 =

1

φ(W )

∫ 2N

N

du

log u

∑′

d1,...,dk
e1,...,ek

dm=em=1

λd1,...,dk
λe1,...,ek∏

i φ([di, ei])

︸ ︷︷ ︸
Q

(m)
2

+O(E2), (9.20)
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in which under EH(θ) for 1
2 ≤ θ < 1 and R = N

θ
2−ε, E2 satisfies

E2 ≪ y2max(logR)
2k
∑
d≤R2

µ2(d)τ3k(d)E(N, d) ≪A
y2maxN

(logN)A
. (9.21)

Thus, it remains to handle Q
(m)
2 .

9.7 Diagonalization of Q
(m)
2

Let g(u) be the multiplicative function satisfying

φ(m) =
∑
u|m

g(u) ⇒ g(p) = p− 2.

Then by reasoning in the computation of (9.11) and (9.11), we have

Q
(m)
2 =

∑
u1,...,uk
um=1

∏
i

g(ui)
∑

s1,2,...,sk,k−1

(si,j ,W )=1∀i̸=j

∏
i,j
i̸=j

µ(si,j)
∑

d1,...,dk
e1,...,ek

dm=em=1
ai|di,bi|ei∀i

λd1,...,dk
λe1,...,ek∏

i φ(di)φ(ei)
,

(9.22)
in which ai and bi are defined as in §9.4.

By the Euler product formula for multiplicative functions,

∑
n≤x

(n,q)=1

µ2(n)

g(n)
≤
∏
p≤x
p∤q

(
1 +

1

p− 2

)
≤
∏
p≤x
p|q

(
1 +

1

p− 2

)−1

exp

∑
p≤x

1

p− 2


≪
∏
p≤x
p|q

p− 2

p− 1
log x =

∏
p≤x

p− 1

p

∏
p≤x
p|q

p(p− 2)

(p− 1)2
log x

≪
∏
p|q

(
1− 1

p

)
log x =

φ(q)

q
log x.

As a result, under the definition

y(m)
r1,...,rk

=
∏
i

µ(ri)g(ri)
∑

d1,...,dk
dm=1
ri|di∀i

λd1,...,dk∏
i φ(di)

, (9.23)
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we see that the subcollection Q
′(m)
2 of terms in Q

(m)
2 with si,j ̸= 1 satisfies

Q
′(m)
2 ≪ (y(m)

max)
2

 ∑
u≤R

(u,W )=1

µ2(u)

g(u)


k−1∑

s≥1

µ2(s)

g(s)

k(k−1)−1 ∑
s′>D0

µ2(s′)

g(s′)

≪ (y(m)
max)

2

(
φ(W )

W
logR

)k−1
1

D0
≪ (y

(m)
max)2φk−1(W )(logR)k−1

W k−1D0
.

Combining this with (9.22) and (9.23), we deduce that

Q
(m)
2 =

∑
u1,...,uk
um=1

(y
(m)
u1,...,uk)

2∏
i g(ui)

+O

{
(y

(m)
max)2φk−1(W )(logR)k−1

W k−1D0

}
. (9.24)

9.8 Asymptotic formula for S
(m)
2

By an easy integration by parts, one has∫ 2N

N

du

log u
=

N

logN
+O

(
N

log2N

)
,

and by (9.5), we know 1/ logN ≪ 1/D0. Additionally, because

∑
u1,...,uk
um=1

(y
(m)
u1,...,uk)

2∏
i g(ui)

≪ (y(m)
max)

2

 ∑
u≤R

(u,W )=1

µ2(u)

g(u)


k−1

≪ (y
(m)
max)2φ(W )k−1(logR)k−1

W k−1
,

we see that (9.20) becomes

S
(m)
2 =

N

φ(W ) logN

∑
u1,...,uk
um=1

(y
(m)
u1,...,uk)

2∏
i g(ui)︸ ︷︷ ︸

T
(m)
2

+O

{
(y

(m)
max)2Nφk−2(W )(logN)k−2

W k−1D0

}
+OA

(
y2maxN

logAN

)
. (9.25)

This is exactly the formula in [14, Lemma 5.2]:

Let

y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑

d1,...,dk

ri|di∀i
dm=1

λd1,...,dk∏k
i=1 φ(di)

,
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where g is the totally multiplicative function defined on primes by g(p) = p− 2.

Let y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |. Then for any fixed A > 0, we have

S
(m)
2 =

N

φ(W ) logN

∑
r1,...,rk

(y
(m)
r1,...,rk)

2∏k
i=1 g(ri)

+O
( (y(m)

max)2φ(W )k−2N(logN)k−2

W k−1D0

)
+O

( y2maxN

(logN)A

)
.

Remark. In Maynard’s original paper, the condition um = 1 is dropped, but

this does not make any difference because from (9.23) it is clear that y
(m)
u1,...,uk

vanishes when um ̸= 1.

9.9 Asymptotic formula for y
(m)
r1,...,rk

In the GPY sieve, we obtained asymptotics by first specifying λ and then
computing the corresponding y and y(m). However, when we were deriving
Soundararajan’s generalized GPY sieve in §7, we found that expressing λ and
y(m) in terms of y could save us a lot of energy, so we combine (9.15) and (9.23)

to express y
(m)
r1,...,rk in terms of yr1,...,rk , yielding

y(m)
r1,...,rk

=
∏
i

µ(ri)g(ri)
∑

d1,...,dk
dm=1
ri|di∀i

∏
i

µ(di)di
φ(di)

∑
a1,...,ak

di|ai∀i

ya1,...,ak∏
i φ(ai)

=
∏
i

µ(ri)g(ri)
∑

a1,...,ak

ya1,...,ak∏
i φ(ai)

∑
d1,...,dk
dm=1

ri|di|ai∀i

∏
i

µ(di)di
φ(di)

. (9.26)

Using the properties of multiplicative functions, we know∑
d

r|d|a

µ(d)d

φ(d)
=
µ(r)r

φ(r)

∑
t|a

(t,r)=1

µ(t)t

φ(t)
=
µ(r)r

φ(r)

∏
p|a
p∤r

(
1− p

p− 1

)

=
µ(r)r

φ(r)

∏
p|a
p∤r

µ(p)

p− 1
=
µ(r)r

φ(r)

µ(a)/φ(a)

µ(r)/φ(r)
=
µ(a)r

φ(a)
.

Plugging this into (9.26), we get

y(m)
r1,...,rk

=
∏
i

µ(ri)g(ri)
∑

a1,...,ak

ri|ai∀i

ya1,...,ak∏
i φ(ai)

∏
i̸=m

µ(ai)ri
φ(ai)

. (9.27)

Remark. We assume rm = 1 throughout the section.
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By (9.14) and our constraints on the support of λd1,...,dk
, we know (9.27) is sup-

ported on (ri,W ) = 1. In addition, the nonzero contribution in the sum comes
from ai satisfying (ai,W ) = 1, so if ai ̸= ri, then ai > D0ri. Consequently, the

subcollection of terms with aj ̸= rj∀j ̸= m in y
(m)
r1,...,rk satisfies

≪ ymax

∏
i

g(ri)ri
∑

am≤R
(am,W )=1

µ2(am)

φ(am)

∏
i̸=j

∑
ai≤R

(ai,W )=1
ri|ai

µ2(ai)

φ(ai)2

∑
aj>D0rj

rj |aj

µ2(aj)

φ(aj)2

≪ ymax
φ(W )

W
logR

∏
i

g(ri)ri
∏
i̸=j

µ2(ri)

φ(ri)2

∑
u≤R

(u,Wri)=1

µ2(u)

φ(u)2
µ2(rj)

φ(rj)

∑
u>D0

µ2(u)

φ(u)2

≪ ymax

∏
i

g(ri)

φ(ri)

φ(W ) logR

WD0
≪ ymaxφ(W ) logR

D0
.

Combining this with (9.27), we deduce that

y(m)
r1,...,rk

=
∏
i

rig(ri)

φ(ri)2

∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(
ymaxφ(W ) logR

D0

)
.

(9.28)

Define β(n) = ng(n)/φ(n)2. Then for a large prime p,

β(p) =
pg(p)

φ(p)2
=

(
1− 1

p

)2(
1− 2

p

)
= 1 +O

(
1

p2

)
,

so it follows from (r1r2 · · · rk,W ) = 1 that

1 ≤
∏
i

rig(ri)

φ(ri)2
≤
∏

p>D0

{
1 +O

(
1

p2

)}
= 1 +O

(
1

D0

)
.

Additionally, because∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
≪ ymax

∑
am≤R

(am,W )=1

µ2(am)

φ(am)
≪ ymaxφ(W ) logR

W
,

we see that (9.28) becomes

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(
ymaxφ(W ) logR

D0

)
, (9.29)

which is precisely [14, Lemma 5.3]:

If rm = 1 then

y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

φ(am)
+O

(ymaxφ(W ) logR

WD0

)
.
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We have now expressed Maynard’s sieve in terms of yr1,...,rk . To continue, we

need to specify yr1,...,rk so that T1 and T
(m)
2 become analytic expressions.

9.10 Analytic expressions for T1, T
(m)
2

Similar to how we picked λd in §7, we let F : [0, 1]k → R be smooth and
vanishing if x1+ · · ·+xk > 1. When r1r2 · · · rk is squarefree and corpime to W ,
define yr1,...,rk to be

yr1,...,rk = F

(
log r1
logR

, . . . ,
log rk
logR

)
, (9.30)

so T1 in (9.18) becomes

T1 =
∑

u1,...,uk

(ui,W )=1
(ui,uj)=1∀i̸=j

∏
i

µ2(ui)

φ(ui)
F 2

(
log u1
logR

, . . . ,
log uk
logR

)
. (9.31)

To continue the analyses of (9.31) and T
(m)
2 , we require a general result that

can easily produce asymptotic formulas.

An asymptotic lemma Let h(n) be a multiplicative function satisfying the
following asymptotic conditions for primes:∑

p≤x

h(p) log p = log x+O(L),
∑
p

h2(p) log p <∞. (9.32)

Then we are interested in the sum

H(x) =
∑
n≤x

µ2(n)h(n). (9.33)
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Similar to how Chebyshev originally studied primes, we attach a logarithmic
weight:

I(x) =
∑
n≤x

µ2(n)h(n) logn =
∑
p≤x

log p
∑
n≤x
p|n

µ2(n)h(n)

=
∑
p≤x

h(p) log p
∑

t≤x/p
p∤t

µ2(t)h(t)

=
∑
p≤x

h(p) log p
∑

t≤x/p

µ2(t)h(t)−
∑
p≤x

h(p) log p
∑

t≤x/p
p|t

µ2(m)h(m)

=
∑
p≤x

h(p) log p
∑

t≤x/p

µ2(t)h(t)−
∑
p≤x

h2(p) log p
∑

m≤x/p2

p∤m

µ2(m)h(m)

=
∑
t≤x

µ2(t)h(t)
∑

p≤x/t

h(p) log p+O{H(x)}

=
∑
t≤x

µ2(t)h(t)
{
log

x

t
+O(L)

}
+O{H(x)}

= H(x) log x− I(x) +O{LH(x)}.

Therefore, we obtain

I(x) =
1

2
H(x) log x+O{LH(x)},

which indicates that

I1(x) =

∫ x

1

H(t)
dt

t
=
∑
n≤x

µ2(n)h(n) log
x

n
=

1

2
H(x) log x+O{LH(x)}, (9.34)

so we have

H(x) =
2I1(x)

log x

{
1 +O

(
L

log x

)}
. (9.35)

Differentiating the left-hand side of (9.34) gives

I ′1
I1

(x) =
2

x log x
+O

(
L

x log2 x

)
.

Integrating, we see that there is some C > 0 such that

I1(x) =
1

2
C log2 x+O(LC log x),

and combining this with (9.35) gives

H(x) = C log x+O(LC). (9.36)
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To determine C, we study the properties of the Dirichlet series F (s) associated
with µ2(n)h(n). By the Euler product formula, as s→ 0+, one has

F (s) =
∏
p

(
1 +

h(p)

ps

)(
1− 1

ps+1

)∏
p

(
1− 1

ps+1

)−1

=
∏
p

(
1 +

h(p)

ps

)(
1− 1

ps+1

)
ζ(s+ 1)

∼ 1

s

∏
p

(1 + h(p))(1− p−1)︸ ︷︷ ︸
S

.

By partial summation on (9.32), it is easily verified that the product S con-
verges. On the other hand, by the integral formula relating F (s) and H(x), we
know

F (s) = s

∫ ∞

1

H(t)

ts+1
dt ∼ Cs

∫ ∞

1

log t

ts+1
dt =

C

s
,

so (9.36) becomes
H(x) = S log x+O(SL). (9.37)

In the study of T1, T
(m)
2 , we need to study sums of the form

HG(x) =
∑
n≤x

µ2(n)h(n)G

(
log n

log x

)
.

Applying partial summation and plugging in (9.37), we get

HG(x) =

∫ x

1

G

(
log t

log x

)
dH(t) =

∫ 1

0

G(u)dH(xu)

= S log x

∫ 1

0

G(u)du+

∫ 1

0

G(u)dO(LS).

Performing integration by parts on the remaining component, we deduce the
result:

Lemma 9.1 (Asymptotic lemma). If h(n) is a multiplicative function satisfying
(9.32) and G : [0, 1] → C is continuously differentiable, then∑

n≤x

µ2(n)h(n)G

(
log n

log x

)
= S log x

∫ 1

0

G(u)du+O{LSGmax},

where
Gmax = max

0≤x≤1
|G(x)|+ max

0≤x≤1
|G′(x)|

and
S =

∏
p

(1 + h(p))(1− p−1).
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Remark. Our proof is adapted from [10, §A.2]

We are now in a position to determine the analytic expressions for T1 and T
(m)
2

Transformation of T1 To apply the asymptotic lemma, we first define

Fmax = max
t1,...,tk

|F (t1, . . . , tk)|+
∑

1≤m≤k

max
t1,...,tk

∣∣∣∣∂F∂ti (t1, . . . , tk)
∣∣∣∣ . (9.38)

Because (ui,W ) = 1∀i, dropping the pairwise coprime condition (ui, uj) =
1∀i ̸= j in (9.31) creates an error of

≪ F 2
max

∑
p>D0

∑
u1,...,uk

(ui,W )=1∀i
p|(ui,uj)∃i,j∧i̸=j

∏
i

µ2(u)

φ(u)
≪ F 2

max

∑
p>D0

1

(p− 1)2

 ∑
u≤R

(u,W )=1

µ2(u)

φ(u)


k

≪ F 2
max

D0

 ∑
u≤R

(u,W )=1

µ2(u)

φ(u)


k

≪ F 2
maxφ(W )k(logR)k

W kD0
.

Set h(n) = 1/φ(n) for (n,W ) = 1 and zero otherwise. Then h(n) satisfies (9.32)
with

L≪
∑
p|W

log p

p
≪ log logW ≪ logD0.

Moreover, because S = φ(W )/W , it follows from the asymptotic lemma and
the error estimates above that

T1 =
φ(W )k(logR)k

W k

∫ 1

0

· · ·
∫ 1

0

F 2(t1, . . . , tk)dt1 · · · dtk︸ ︷︷ ︸
Ik(F )

+O

{
F 2
maxφ(W )k(logR)k−1 logD0

W k

}
+O

{
F 2
maxφ(W )k(logR)k

W kD0

}
.

Combining this with (9.5) and (9.18), one obtains an analytic expression for S1:

S1 =
φ(W )kN(logR)k

W k+1
Ik(F ) +O

{
F 2
maxφ(W )kN(logR)k

W k+1D0

}
. (9.39)

This completes the proof of [14, Lemma 6.2]:

Let yr1,...,rk be given in terms of a smooth function F by [ (9.30)], with F

supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}. Let

Fmax = sup
(t1,...,tk)∈[0,1]k

|F (t1, . . . , tk)|+
k∑

i=1

|∂F
∂ti

(t1, . . . , tk)|.
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Then we have

S1 =
φ(W )kN(logR)k

W k+1
Ik(F ) +O

(F 2
maxφ(W )kN(logR)k

W k+1D0

)
,

where

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2dt1 . . . dtk.

Transformation of T
(m)
2 To compute T

(m)
2 , we first determine y

(m)
r1,...,rk . Ap-

plying the asymptotic lemma to (9.28), we see that when rm = 1, one has

y(m)
r1,...,rm = (logR)

φ(W )

W

∏
i

φ(ri)

ri

∫ 1

0

F

(
log r1
logR

, . . . , tm, . . . ,
log rk
logR

)
dtm︸ ︷︷ ︸

F
(m)
r1,...,rk

+O

(
Fmaxφ(W ) logR

WD0

)
.

Plugging this into T
(m)
2 of (9.25), we have

T
(m)
2 =

φ(W )2(logR)2

W 2

∑
u1,...,uk
um=1

(ui,W )=1∀i
(ui,uj)=1∀i̸=j

∏
i

µ2(ui)φ(ui)
2

g(ui)u2i
F (m)
u1,...,uk

(9.40)

+O

{
F 2
maxφ(W )k+1(logR)k+1

W k+1D0

}
.

Similar to our computations in T1, we see that we can drop (ui, uj) = 1∀i ̸= j
at the expense of

≪ F 2
maxφ(W )2(logR)2

W 2

∑
p>D0

φ(p)4

g(p)2p4

 ∑
u≤R

(u,W )=1

µ2(u)φ(u)2

g(u)u2


k−1

≪ F k+1
maxφ(W )k+1(logR)k+1

W k+1D0
.

Therefore, applying the asymptotic lemma to (9.40) gives

T
(m)
2 =

φ(W )k+1(logR)k+1

W k+1
Jk(F ) +O

{
F 2
maxφ(W )k+1(logR)k+1

W k+1D0

}
, (9.41)

in which

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 · · · dtm−1dtm+1 · · · dtk.

(9.42)
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Plugging these into (9.25), we get

S
(m)
2 =

φ(W )kN(logR)k+1

W k+1 logN
J
(m)
k (F ) +O

{
F 2
maxφ(W )kN(logN)k

W k+1D0

}
. (9.43)

This completes the proof of [14, Lemma 6.3]:

Let yr1,...,rk , F and Fmax be as described in [14, Lemma 6.2] Then we have

S
(m)
2 =

φ(W )kN(logR)k+1

W k+1 logN
J
(m)
k (F ) +O

(F 2
maxφ(W )kN(logR)k

W k+1D0

)
,

where

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2
dt1 . . . dtm−1dtm+1 . . . dtk.

In addition, plugging (9.30) into (9.15), we get an expression of λd1,...,dk
:

λd1,...,dk
=
∏
i

diµ(di)
∑

r1,...,rk
di|ri∀i

(ri,W )=1∀i

µ(
∏

i ri)
2∏

i φ(ri)
F

(
log r1
logR

, . . . ,
log rk
logR

)
.

This explains why [14, Proposition 4.1] has such a formidable appearance:

Let the primes have exponent of distribution θ > 0, and let R = Nθ/2−δ for
some small fixed δ > 0. Let λd1,...,dk

be defined in terms of a fixed smooth
function F by

λd1,...,dk
=
( k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri∀i

(ri,W )=1∀i

µ(
∏k

i=1 ri)
2∏k

i=1 φ(ri)
F

(
log r1
logR

, . . . ,
log rk
logR

)
,

whenever (
∏k

i=1 di,W ) = 1, and let λd1,...,dk
= 0 otherwise. Moreover, let F be

supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}. Then we have

S1 =
(1 + o(1))φ(W )kN(logR)k

W k+1
Ik(F ),

S2 =
(1 + o(1))φ(W )kN(logR)k+1

W k+1 logN

k∑
m=1

J
(m)
k (F ),

provided Ik(F ) ̸= 0 and J
(m)
k (F ) ̸= 0 for each m, where

Ik(F ) =

∫ 1

0

· · ·
∫ 1

0

F (t1, . . . , tk)
2dt1 . . . dtk,

J
(m)
k (F ) =

∫ 1

0

· · ·
∫ 1

0

(∫ 1

0

F (t1, . . . , tk)dtm

)2

dt1 . . . dtm−1dtm+1 . . . dtk.

Having converted everything into analytic expressions, we investigate the lower
bound of (9.2).
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9.11 Maynard’s variational problem

Plugging (9.39) and (9.43) into (9.2), we get

S =
φ(W )k+1N(logR)k

W k

(
logR

logN

∑
m

J
(m)
k (F )− ρIk(F ) + o(1)

)
.

Let Sk be the space of continuously differentiable functions F : [0, 1]k → Rk

supported on t1 + · · ·+ tk ≤ 1. Then defining

Mk = sup
F∈Sk

∑
m J

(m)
k (F )

Ik(F )
, (9.44)

we have

S >
φ(W )k+1N(logR)k

W k
Ik(F )

{
θ

2
Mk − ρ+O(ε)

}
. (9.45)

Therefore, S > 0 will follow from θMk/2 > ρ. Combining this with (9.2), S > 0
implies there exists infinitely many n for which at least ⌊ρ+1⌋ members among
n+ h1, . . . , n+ hk are primes. This proves [14, Proposition 4.2]:

Let the primes have a level of distribution θ > 0. Let δ > 0 and H =

{h1, . . . , hk} be an admissible set. Let Ik(F ) and J
(m)
k (F ) be given as in [14,

Proposition 4.1], and let Sk denote the set of [continuously differentiable] func-

tions F : [0, 1]k → R supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}
with Ik(F ) ̸= 0 and J

(m)
k (F ) ̸= 0 for each m. Let

Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
, rk =

⌈θMk

2

⌉
.

Then there are infinitely many integers n such that at least rk of the n+hi (1 ≤
i ≤ k) are prime. In particular, lim infn(pn+rk−1− pn) ≤ max1≤i,j≤k(hi−hj).

So far, we have completed a full derivation of the arithmetic aspect of Maynard’s
work. From (9.45), we see that the problem of small gaps between primes is a
matter of optimizing the functional Mk = Mk(F ). If we can find k such that
Mk > 4 = 2/(1/2), then we will deduce bounded gaps between primes by only
invoking the Bombieri–Vinogradov theorem.

9.12 Conclusion

In this article, we applied a variety of techniques from number theory and ob-
tained an analytic expression for Maynard’s “dimensional reduction” sieve, even-
tually converting a problem of prime number theory into a variational problem.
In the next article, we will introduce Maynard’s solution to this variational
problem. Please stay tuned for updates!

Oct 17, 2022
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10 Maynard’s dimensional reduction strike II

In the last article, we converted the problem of prime gap into a variational
problem. Define

Ik =

∫
· · ·
∫
[0,1]k

F 2(t1, . . . , tk)dt1 · · · dtk (10.1)

and

J
(m)
k =

∫
· · ·
∫
[0,1]k−1

(∫ 1

0

F (t1, . . . , tk)dtm

)2 ∏
1≤i≤k
i̸=m

dti. (10.2)

Then we want to find F = Fk supported on t1 + · · ·+ tk ≤ 1 such that

Mk =

∑
1≤m≤k J

(m)
k

Ik
(10.3)

attains its maximum. Specifically, when θ is the level of distribution of primes,
there exists Ck ≥ 2 such that there are infinitely many n’s such that the interval
[n, n+Ck] contains rk = ⌈θMk/2⌉ primes. Therefore, the analytic properties of
(10.3) have significant consequences in number theory. In this article, we follow
Maynard’s steps to attack this variational problem, thereby proving his main
results:

Theorem 10.1. lim infn→∞(pn+m − pn) ≤ Cm3e4m for some absolute C > 0
and all m ∈ N.

Theorem 10.2. lim infn→∞(pn+1 − pn) ≤ 600.

10.1 Optimization procedure for large k

According to the GPY sieve formula (9.2), permuting h1, . . . , hk does not af-
fect the asymptotic formula, so we naturally assume F to be symmetric about

t1, . . . , tk. Combining this assumption with (??), we see that J
(m)
k = J1

k =: Jk,
so Mk = kJk/Ik. Therefore, optimizing (10.3) is the same as finding upper
bounds for Ik and lower bounds for Jk.

To simplify the task, Maynard assumed F to take the form

F (t1, . . . , tk) = g(kt1)g(kt2) · · · g(ktk) (10.4)

on its support t1 + · · · + tk ≤ 1, where g is some smooth function on [0, T ].
Plugging this into (10.1) and (10.2), we get

Ik ≤

(∫ T/k

0

g2(kt)dt

)k

= k−kγk, γ =

∫ T

0

g2(u)du (10.5)
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and

Jk ≥
∫

· · ·
∫

t2,...,tk≥0∑
2≤i≤k ti≤1−T/k

(∫ T/k

0

g(kt1)dt1

)2 ∏
2≤i≤k

g2(kti)dt2 · · · dtk

= k−k−1

(∫ T

0

g(u)du

)2 ∫
· · ·
∫

u2,...,uk∈[0,T ]∑
2≤i≤k ui≤k−T

∏
2≤i≤k

g2(ui)du2 · · · duk. (10.6)

Let J ′
k be the version of Jk without the blue condition. Then

J ′
k = k−k−1

(∫ ∞

0

g(u)du

)2(∫ ∞

0

g2(u)du

)k−1

= k−k−1γk−1

(∫ ∞

0

g(u)du

)2

,

(10.7)
Compared to (10.2), (10.7) is simpler in structure, so we hope the error

Ek = J ′
k − Jk =

J ′
k

γk−1

∫
· · ·
∫

u2,...,uk∈[0,T ]∑
2≤i≤k ui>k−T

∏
2≤i≤k

g2(ui)du2 · · · duk (10.8)

is small. This means g(u) must be very small for large u. To achieve this, we
invoke some intuitions from physics.

10.2 Simplex and center of mass

Remark. Let P0, P2, . . . , Pn be points in a Euclidean space in general position
(i.e., no Pj is a convex linear combination of others). Then the set of points of
the form

n∑
j=0

tjPj , tj ∈ [0, 1],

n∑
j=0

tj = 1

is called an n-simplex.

Since squares of real numbers are non-negative, we can regard Jk and J ′
k as

the mass of certain geometric objects. Indeed, the former denotes the mass
of a (k − 1)-simplex whose vertices consist of the origin and k − 1 standard
basis vectors, and the latter corresponds to that of a (k−1)-hypercube, and the
density of these objects is given by

ρ(u2, . . . , uk) = k−k−1

(∫ T

0

g(u)du

)2 ∏
2≤i≤k

g2(ui) (10.9)

From a physical point of view, J ′
k well approximates Jk if the center of mass of

the (k − 1)-hypercube lies within the hypercube [0, 1− T
k ]

k−1 embedded in the
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(k − 1)-simplex
∑

2≤i≤k ui ≤ 1− T
k . Therefore, we introduce the inequality

µ =

∫ T

0
ug2(u)du∫ T

0
g2(u)du

< 1− T

k
. (10.10)

Under this assumption, we estimate Ek in (10.8).

Since k − T = (k − 1)− (T − 1), we have∑
2≤i≤k

ui > k − T ⇐⇒ 1

k − 1

∑
2≤i≤k

ui > 1− T − 1

k − 1
.

Moreover, because k > T and k ≥ 2, so T−1
k−1 >

T
k . Hence, setting the right-hand

side as η + µ, we get

η =

(
1− T − 1

k − 1

)
− µ > 0 (10.11)

and  1

k − 1

∑
2≤i≤k

ui − µ

2

≥

{
η2

∑
2≤i≤k ui > k − T

0
∑

2≤i≤k ui ≤ k − T
. (10.12)

Plugging (10.12) into the multiple integral in (10.8), one has

η2
∫

· · ·
∫

u2,...,uk∈[0,T ]∑
2≤i≤k ui>k−T

≤
∫
[0,T ]k−1

 1

k − 1

∑
2≤i≤k

ui − µ

2 ∏
2≤m≤k

g2(um)du2 · · · duk

=

∫
[0,T ]k−1

(
2

(k − 1)2

∑
2≤i<j≤k

uiuj

− 2µ

k − 1

∑
2≤i≤k

ui + µ2 +
1

(k − 1)2

∑
2≤i≤k

u2i

)
×

∏
2≤m≤k

g2(um)du2 · · · duk. (10.13)

By (10.10) and symmetry, we know∫
[0,T ]k−1

uiuj
∏

2≤m≤k

g2(um)du2 · · · duk = µ2γk−1,

∫
[0,T ]k−1

ui
∏

2≤m≤k

g2(um)du2 · · · duk = µγk−1,

and ∫
[0,T ]k−1

u2i
∏

2≤m≤k

g2(um)du2 · · · duk ≤ µTγk−1.

65



Plugging these back into (10.13), we deduce that

Ek ≤ J ′
k

γk−1
· η−2γk−1

(
µT

k − 1
− µ2

k − 1

)
≤ J ′

kµT

η2(k − 1)
,

so

Jk ≥ J ′
k

(
1− µT

η2(k − 1)

)
.

Combining this with (10.3), (10.5), (10.6), and (10.7), we obtain the following
lower bound:

Mk ≥ γ−1

(∫ T

0

g(u)du

)2(
1− µT

η2(k − 1)

)
. (10.14)

10.3 The optimal choice of g

According to (10.14), the optimization problem with respect to a multivariable
function F (t1, . . . , tk) has now become a simpler optimization problem with
respect to g(u):

max
g

∣∣∣∣∣
∫ T

0

g(u)du

∣∣∣∣∣ s.t. γ =

∫ T

0

g2(u)du, µγ =

∫ T

0

ug2(u)du. (10.15)

By the principle of Lagrange multipliers, we construct the functional

S(g) =

∫ T

0

g(u)du− α

(∫ T

0

g2(u)du− γ

)
− β

(∫ T

0

ug2(u)du− µγ

)

=

∫ T

0

(
g(u)− (α+ βu)g2(u) +

αγ + βµγ

T

)
︸ ︷︷ ︸

L(u,g)

du.

Now, by the Euler–Lagrange equation and ∂L
∂g′ = 0, we see that S(g) attains

extremum under the choice

g(u) =
1

2α+ 2βu
=

(2α)−1

1 +Au
, A = β/α > 0, (10.16)

so we have∫ T

0

g(u)du =
(2α)−1

A
log(1 +AT ), γ =

(2α)−2

A

(
1− 1

1 +AT

)
, (10.17)

and

µγ =
(2α)−2

A2

[
log(1 +AT )−

(
1− 1

1 +AT

)]
. (10.18)
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These imply that

γ−1

(∫ T

0

g(u)du

)2

≥ log2(1 +AT )

A
, µ =

1

A

(
log(1 +AT )

1− e− log(1+AT )
− 1

)
.

(10.19)

Now, we set T = eA−1
A , so

µ =
1

A

(
A

1− e−A
− 1

)
= 1− 1

A
+O(e−A)

= 1− eA

AeA
+O(e−A) ≤ 1− T

eA
+O(e−A)

= 1− T

eA
[1 +O(Ae−A)] ≤ 1− T

2eA
.

for large A. To ensure (10.10) holds, we require eA = o(k). Now, by (10.11),
we also know

η =
1

A
− T − 1

k − 1
+O(e−A) =

1− eA/k

A
{1 +O(Ae−A)},

which implies

µT

η2(k − 1)
=

(1−A−1)(eA − 1)/A

A−2(1− eA/k)2(k − 1)
{1 +O(Ae−A)}

=
AeA

k

{
1 +O

(
A

eA
+
eA

k
+

1

A

)}
. (10.20)

Now, set eA = k/ log2 k, so Ae−A ∼ k−1 log3 k, k−1eA ∼ (log k)−2, and A−1 ∼
(log k)−1, so (10.20) becomes

µT

η2(k − 1)
≤ 1

log k

{
1 +O

(
1

log k

)}
=

1

log k
+O

(
1

log2 k

)
.

Combining this with (10.19) and plugging them into (10.14), one deduces that

Mk ≥ A

(
1− µT

η2(k − 1)

)
= (log k − 2 log log k)

{
1− 1

log k
+O

(
1

log2 k

)}
= log k − 2 log log k − 1 + o(1). (10.21)

Now, let us discuss the number-theoretic significance of (10.21).
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10.4 Proof of Theorem 10.1

By (10.21), we have for large k that

rk ≥ θ

2
Mk ≥ θ

2
log

k

(log k)2
+O(1).

Since the main term on the right-hand side is increasing, for each m ∈ N one
can find k ∈ N such that rk ≥ m+1. Therefore, we can find Dm = Ck ≥ 2 such
that there exist infinitely many intervals of length Dm containing m+1 primes,
so

lim inf
n→∞

(pn+m − pn) ≤ Dm <∞. (10.22)

We can go further to explore the growth of Dm with respect to m. Set k =
⌈Bm2e2m/θ⌉. Then for large B,m, one has

rk ≥ θ

2
log

Bm2e2m/θ

(2 logm+ 2m/θ)2
1 +O(1)

= m+
θ

2
logB +O(1) > m+ 1.

Based on our study of admissible tuples in §8.5, let h1, h2, . . . , hk be the first k
primes greater than k. Then H = {h1, . . . , hk} is admissible. Therefore, we can
set

Ck = min
{h1,...,hk} admissible

max
1≤i<j≤k

|hi − hj | ≤ pπ(k)+k − pk, (10.23)

By the prime number theorem, pn ∼ n logn, so Ck ≪ k log k. Plugging in our
expressions for k, we obtain a quantitative version of (10.22):

lim inf
n→∞

(pn+m − pn) ≤ Cm3e2m/θ. (10.24)

By the Bombieri–Vinogradov theorem, we can take θ = 1
2 . Plugging this into

(10.24) concludes the proof of Theorem 10.1, which can be regarded as a gen-
eralization of Zhang’s theorem.

10.5 Optimization procedure for small k

If we can find k such that
Mk > 2/θ, (10.25)

then we have
lim inf
n→∞

(pn+1 − pn) ≤ Ck. (10.26)

From (10.23), we know Ck is increasing with respect to k, so we want to find
the smallest k for which (10.25) holds, so we cannot just compute asymptotic
lower bounds.
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Since continuous functions can be uniformly approximated by polynomials, for
small k, Maynard set F to be a symmetric polynomial directly. Since F is
supported on t1 + · · ·+ tk ≤ 1, a reasonable design is

Fb,c(t1, . . . , tk) =

1−
∑

1≤i≤k

ti

b ∑
1≤i≤k

t2i

c

,

where b, c ∈ Z≥0. For flexibility, Maynard considered linear combinations of
Fb,c. That is, when t1 + · · ·+ tk ≤,

F (t1, . . . , tk) =
∑

1≤j≤d

ajFbj ,cj (t1, . . . , tk). (10.27)

Plugging (10.27) into Ik and J
(m)
k , we see that when a = (a1, a2, . . . , ad)

T is a
column vector, there exists positive definite A1, A2 for which

Mk =
kJk
Ik

=
aTA2a

aTA1a
. (10.28)

Therefore, we have effectively converted a variational problem to an optimiza-
tion problem concerning the ratio of quadratic forms.

10.6 Optimization of the quadratic form

Since the ratio (10.28) is invariant under dilation, we can normalize the de-
nominator so we are now faced with a multivariable constraint optimization
problem.

max
a

aTA2a s.t. aTA1a = 1, (10.29)

which is approachable using Lagrange multipliers. Define

L = aTA1a− λ(aTA2a− 1).

Then the gradient calculation gives

0 =
∂L

∂a
= (2A2 − 2λA1)a ⇐⇒ A1

−1A2a = λa.

Therefore, L attains extremum if and only if a is an eigenvector of A−1
1 A2, so

the solution to (10.29) is exactly the largest eigenvalue of A−1
1 A2:

Mk = aTA1(λa) = λ.

10.7 Proof of Theorem 10.2

By running Mathematica code, Maynard found that when k = 105, the largest
eigenvalue of A−1

1 A2 is λ ≈ 4.02 > 4, so when θ = 1
2 , one has M105 > 2/θ.
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Hence, the remaining task is to find an admissible H of size 105. According to
the Andrew Sutherland’s lookup table2, we can take

H = {0, 10, 12, 24, 28, 30, 34, 42, 48, 52, 54, 64, 70, 72, 78, 82, 90, 94, 100, 112,
114, 118, 120, 124, 132, 138, 148, 154, 168, 174, 178, 180, 184, 190, 192, 202,
204, 208, 220, 222, 232, 234, 250, 252, 258, 262, 264, 268, 280, 288, 294, 300,
310, 322, 324, 328, 330, 334, 342, 352, 358, 360, 364, 372, 378, 384, 390, 394,
400, 402, 408, 412, 418, 420, 430, 432, 442, 444, 450, 454, 462, 468, 472, 478,
484, 490, 492, 498, 504, 510, 528, 532, 534, 538, 544, 558, 562, 570, 574, 580,
582, 588, 594, 598, 600}.

Therefore, C105 = 600, so we deduce (10.2):

lim inf
n→∞

(pn+1 − pn) ≤ 600,

which is a significant improvement to Zhang’s bound.

10.8 Conclusion

In this article, we began our discussion from Maynard’s variational problem
and presented two different approaches for large and small k, eventually pro-
ducing generalizations and improvements of Zhang’s theorem. The publication
of Maynard’s result effectively caused Polymath8 to relaunch. By combining
Maynard’s method with Zhang’s, the project eventually improved Theorem 10.1
and Theorem 10.2 to

lim inf
n→∞

(pn+m − pn) ≤ Ce(4−
28
157 )m, lim inf

n→∞
(pn+1 − pn) ≤ 246. (10.30)

For curious readers, please see Tao’s blog post 3.

Dec 17, 2022

2https://math.mit.edu/~primegaps/
3https://terrytao.wordpress.com/2013/11/19/polymath8b-bounded-intervals-with-many-primes-after-maynard/
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