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Partial Order

Definition

A relation R is a partial order on a set S iff

▶ Reflexivity: aRa for any a ∈ S .

▶ Anti-symmetry: If aRb and bRa, then a = b.

▶ Transitivity: If aRb and bRc , then aRc.

Examples

1. (R,≤), where ≤ is the usual order.

2. (N,≤), where a ≤ b iff a|b, called ordering by divisibility.
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Totally Ordered Set and Well-Ordered Set

Definition

1. Let (S ,≤) be partially ordered. S is totally ordered iff
∀a, b ∈ S either a ≤ b or b ≤ a.

2. Let (S ,≤) be totally ordered. S is well-ordered iff every
non-empty subset of S has a least element.

Examples
Let ≤ be the usual order. Then

1. (R,≤) is totally ordered but not well-ordered.

2. (N,≤) is well-ordered.
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Maximum and Maximal Element

Definition

Let (S ,≤) be a partially ordered set.

1. m ∈ S is a maximal element of S iff m is greater than
or equal to all elements comparable with m.

2. M ∈ S is the maximum of S iff ∀x ∈ S , x ≤ M.

Examples Let (N,≤) be defined such that a ≤ b iff b|a. Then
1. 1 is the maximum of (N,≤).

2. Prime numbers are the maximal elements of (N \ {1},≤).
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Chain and Upper Bound

Definition

Let (S ,≤) be a partially ordered set and S ′ ⊆ S .

1. u ∈ S is an upper bound for S ′ iff ∀x ∈ S ′, x ≤ u.

2. S ′ is a chain iff (S ′,≤) is a totally ordered.

Examples
Let S = N, and a ≤ b iff. a|b.
1. S1 = {1, 2, 3, 5, 12, 15}: 60 is an upper bound.

2. S2 = {2n|n ∈ N} is a chain.
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Equivalence

The following statements are equivalent:

1. Well-Ordering Theorem: For any set S , there exists a
relation R on S such that (S ,R) is well-ordered.

2. Axiom of Choice: Let {Ai}i∈I be a family of non-empty sets
indexed by I . Then there exists some f such that f (Ai ) ∈ Ai

for all i ∈ I .

3. Zorn’s Lemma: Let S be a non-empty partially ordered set.
If every chain in S has an upper bound in S , then S contains
a maximal element.
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Applications to Linear Algebra

Theorem 2.1

Every nonzero vector space V contains a basis.

Proof.
Let S be the set of linearly independent subsets in V .

▶ S is non-empty.

▶ (S ,⊆) is partially ordered.

▶ Every chain of S has an upper bound in S .

▶ Zorn’s Lemma =⇒ S has a maximal element B.
▶ B is a basis for V .
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Applications to Linear Algebra

Corollary 2.2

Every spanning set of a nonzero vector space V contains a
basis of V .

Proof.
Let S be a spanning set of V . Consider the set S ′ of linearly
independent subsets of S .

▶ S ′ is nonempty. (S ′,⊆) is partially ordered. Every chain of S ′

has an upper bound in S ′.

▶ Zorn’s lemma =⇒ S ′ has a maximal element B.
▶ Show that B is a basis of V by showing B spans S which

spans V .
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Applications to Linear Algebra

Corollary 2.3

Every linearly independent subset of a nonzero vector space V can be
extended to a basis of V . In particular, every subspace W of V is a
direct summand: V = W ⊕ U for some subspace U of V .

Corollary 2.4

There exists some f : R → R satisfying f (x + y) = f (x) + f (y) for all
x , y ∈ R and not of the form f (x) = cx for some c ∈ R.

Corollary 2.5

As abelian groups, the vector space Rn with + is isomorphic to the group
(R,+) for every n ≥ 1.
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The Banach Tarski Paradox

The Banach Tarski Principle is a demonstration of how the axiom
of choice can use volume preserving transformations (such as

rotations) to duplicate the volume of an object.
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Terrence Tao’s Proof

Terrence Tao proved a smaller version of the paradox; which works
off a line instead of a sphere.
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Terrence Tao’s Proof

Theorem 3.1

There exists an (uncountably large) subset of [0, 2], breaking
it up into a countable number of disjoint subsets, and trans-
lating each subset to form R
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Step 1

▶ Define ∼ over [0, 1] to be an equivalence relation where x ∼ y
iff x − y ∈ Q, creating uncountable equivalence classes
countably large.
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Step 2

▶ Define ∼ over [0, 1] to be an equivalence relation where x ∼ y
iff x − y ∈ Q, creating uncountable equivalence classes
countably large.

▶ Use the AC to create a new set X by selecting an arbitrary
element from each equivalence class
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Step 3

▶ Define ∼ over [0, 1] to be an equivalence relation where x ∼ y
iff x − y ∈ Q, creating uncountable equivalence classes
countably large.

▶ Use the AC to create a new set X by selecting an arbitrary
element from each equivalence class

▶ Note that X + q is disjoint for any q ∈ Q ∩ [0, 1]. Let Y be
the union of these sets; this is an uncountably large subset of
[0, 2] made up of a countable number of disjoint subsets.
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Step 4

▶ Define ∼ over [0, 1] to be an equivalence relation where x ∼ y iff
x − y ∈ Q, creating uncountable equivalence classes countably
large.

▶ Use the AC to create a new set X by selecting an arbitrary
element from each equivalence class

▶ Note that X + q is disjoint for any q ∈ Q ∩ [0, 1]. Let Y be the
union of these sets; this is an uncountably large subset of [0, 2]
made up of a countable number of disjoint subsets.

▶ Let f be a mapping from all rationals in [0, 1] (which exists as
both sets are countably infinity) to the entirety of Q. Translate all
of X + q to X + f (q). This is R.
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Formal Theory

A theory T is a collection of logical statements.

Example

Let TG be consisted of the following:

1. Closure: ∀a, b ∈ G a ∗ b ∈ G ,

2. Associativity: ∀a, b, c ∈ G a ∗ (b ∗ c) = (a ∗ b) ∗ c ,

3. Identity: ∃e ∈ G∀a ∈ G a ∗ e = e ∗ a = a,

4. Inverse: ∀a ∈ G∃b ∈ G a ∗ b = b ∗ a.

Then TG is a theory for groups.
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Zermelo-Fraenkel Set Theory

ZF denotes the Zermelo-Fraenkel axioms excluding AC:

1. Extensionality: ∀A,B[∀x(x ∈ A ⇐⇒ x ∈ B)] ⇐⇒ A = B.

2. Regularity: ∀A[A ̸= ∅ =⇒ ∃x ∈ A(x ∩ A = ∅)].

3. Separation: {x ∈ A : ϕ(x)} defines a set.

4. Pairing: {x , y} is a set.

5. Union: Let F be a set of sets. Then {x : ∃A ∈ F(x ∈ A)} is a set.

6. Replacement: If ∀x ∈ A∃!y [ϕ(x , y)], then {y : ∃x ∈ A[ϕ(x , y)]} is a set.

7. Infinity: N is a set.

8. Power set: {X : X ⊆ A} is a set.
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Consistency of Formal Theories

T is consistent iff no contradiction can be proved from T .

For any proposition p and any consistent T ,

▶ T proves p iff T ∪ {¬p} is inconsistent.

▶ T ∪ {p} and T ∪ {¬p} cannot be both inconsistent.

▶ p is independent from T when p can neither be proved nor
disproved from T .
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Independence of AC from ZF

Theorem 4.1

If ZF is consistent, then

▶ Kurt Gödel (1938): ZF ∪ {AC} is consistent.

▶ Paul Cohen (1963): ZF ∪ {¬AC} is consistent.

Kurt Gödel Paul Cohen
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Ideas of Independence Proofs

A group (G , ∗) is said to be abelian iff it satisfies TG and

▶ Commutativity: ∀a, b ∈ G a ∗ b = b ∗ a.

Theorem 4.2

Commutativity is independent from TG .

Proof.
Note that (Z,+) and (S3, ◦) are both groups:

▶ If commutativity can be disproved from TG , then (Z,+) is not abelian.

▶ If commutativity can be proved from TG , then (S3, ◦) must be abelian.

▶ Contradiction in both cases!
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Models for Set Theory

Mathematics is a game played according to certain simple rules
with meaningless marks on paper. —— David Hilbert

▶ (Z,+) and (S3, ◦) are models for (TG ,G , ∗).

▶ When T is a collection of axioms for set theory, a model for
(T ,V ,∈) specifies the collection of sets V and defines ∈ so that
all statements in T are true.

▶ Soundness: T is consistent if it has a model.

▶ Gödel found a model for (ZF ∪ {AC},V ,∈).

▶ Cohen found a model for (ZF ∪ {¬AC},V ,∈).
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